Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202311749, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37815099

RESUMO

Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.

2.
Chem Sci ; 14(24): 6770-6779, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350823

RESUMO

Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(µ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(µ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.

3.
Inorg Chem ; 61(2): 1079-1090, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34978453

RESUMO

The mono-benzaldimine (HN═CHPh) complex [(tBupyrpyrr2)Fe(HN═CHPh)] (1-HN═CHPh) has been prepared by reaction of [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 2,6-bis(3,5-di-tert-butyl-pyrrolyl)pyridine) with one equivalent of benzyl azide. Compound 1-HN═CHPh retains the cis-divacant octahedral coordination geometry akin to 1, as established by single crystal X-ray diffraction study. A bis-HN═CHPh complex [(tBupyrpyrr2)Fe(HN═CHPh)2] (2) was also prepared by the addition of two equivalents of benzyl azide to 1, and its molecular structure exhibits the two HN═CHPh ligands coordinated trans to each other, thereby forming a square pyramidal coordination geometry at the FeII center. Reaction of 1 with excess benzyl azide yields [(tBupyrpyrr2)Fe(HN═CHPh)2·PhCHNCH(NH2)Ph] (2-PhCHNCH(NH2)Ph), which contains an unstable benzylideneamino phenyl methanamine fragment, effectively hydrogen bonded to 2. Thermolysis of 2 or 2-PhCHNCH(NH2)Ph releases the HN═CHPh self-coupling products hydrobenzamide (A), N-benzylidine benzylamine (B), and benzonitrile (C). Under catalytic conditions, free HN═CHPh (cis/trans-HN═CHPh mixture) is produced using 2.5 mol % of 1 in 90% spectroscopic yield. These studies provide a clearer understanding for the conversion of the HN═CHPh in 2 or 2-PhCHNCH(NH2)Ph to the C-C and C-N coupled products. Reduction of 1-HN═CHPh with KC8 yields the reductively coupled benzylamide complex [K(OEt2)]2[(tBupyrpyrr2)2Fe2(µ2-NHCHPhCHPhNH)] (3) as the result of a new C-C bond formed between two radical benzylamide fragments.

4.
Inorg Chem ; 60(17): 13091-13100, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34375089

RESUMO

Oxidation of the low-spin FeIV imido complex [{(tBupyrr)2py}Fe═NAd] (1) ((tBupyrr)2py2- = 2,6-bis(3,5-di-tert-butyl-pyrrolyl)pyridine, Ad = 1-adamantyl) with AgOAc or AgNO3 promotes reductive N-N bond coupling of the former imido nitrogen with a pyrrole nitrogen to form the respective ferric hydrazido-like pincer complexes [{(tBupyrrNAd)(tBupyrr)py}Fe(κ2-X)] (X = OAc-, 2OAc; NO3-, 2NO3). Reduction of 2OAc with KC8 cleaves the N-N bond to reform the FeIV imido ligand in 1, whereas acid-mediated demetalation of 2OAc or 2NO3 yields the free hydrazine ligand [(tBupyrrNHAd)(tBupyrrH)py] (3), the latter of which can be used as a direct entry to the iron imido complex when treated with [Fe{N(SiMe3)2}2]. In addition to characterizing these Fe systems, we show how this nitrene transfer strategy can be expanded to Co for the one-step synthesis of Co{(tBu-NHAdpyrr)(tBupyrr)py}] (4) ((tBu-NHAdpyrr)(tBupyrr)py2- = 2-(3-tBu-5-(1-adamantylmethyl-2-methylpropane-2-yl)-pyrrol-2-yl)-6-(3,5-tBu2-pyrrol-2-yl)-pyridine).

5.
J Phys Chem A ; 122(30): 6183-6195, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30028618

RESUMO

The acidity dependence of the iron-catalyzed bromate-malonic acid Belousov-Zhabotinsky reaction was studied in the range 0.36 M < [H2SO4]0 < 1.20 M, and the temporal evolutions of the oscillation patterns were analyzed. The experimental results show that the period times PT i decrease exponentially with increasing acidity and that the period times parallel the decrease of the reduction times RT with increasing acidity. Simulations using the reactions of the commonly accepted core reaction mechanism failed to match the measurements even in a qualitative fashion. However, we found that compelling agreement between the experiments and the simulations can be achieved over the entire range with the inclusion of second-order proton-catalysis of the oxidation of bromomalonic acid (BrMA) by the [Fe(phen)3]3+ species in the reaction identified in this paper as reaction 9 (R9), and this [H+] dependence is informative about the species involved in the outer sphere electron transfer reaction. The trication [Fe(phen)3]3+ species is stabilized by ion pairing and solvation, and one may anticipate the presence of [Fe(phen)3(HSO4) n(H2O) m](3- n)+ species ( n = 0-3). Our results suggest that the removal of aggregating HSO4- ions by protonation creates a better oxidant and facilitates the approach of the reductant BrMA, and the second-order [H+] dependence further suggests that BrMA is primarily oxidized by a doubly charged [Fe(phen)3(HSO4)1(L) k]2+ species. Considering the complexity of the BZ system and the uncertainties in the many reaction rate constants, we were somewhat surprised to find this high level of agreement by (just) the replacement of R9 by R9'. In fact, the near-quantitative agreement presents a powerful corroboration of the core reaction mechanism of the BrMA-rich BZ reaction, and the replacement of R9 by R9' extends the validity of this core reaction mechanism to acidities above and below the typical acidity of BZ reactions ([H+] ≈ 1 M).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...