Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 47(13): 5780-6, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18498155

RESUMO

Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric Fe (III)OH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the Fe (III)OH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe-O hydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe-O bond became. Spectroscopic trends were also found, including an increase in the energy of the O-H vibrations with a decrease in the number of hydrogen bonds. However, the Fe (III/II) reduction potentials were constant throughout the series ( approximately 2.0 V vs [Cp 2Fe] (0/+1)), which is ascribed to a balancing of the primary and secondary coordination-sphere effects.


Assuntos
Compostos Férricos/química , Ligação de Hidrogênio , Compostos Férricos/síntese química , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Inorganica Chim Acta ; 360(7): 2397-2402, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-19946568

RESUMO

Hydrogen bonding networks proximal to metal centers are emerging as a viable means for controlling secondary coordination spheres. This has led to the regulation of reactivity and isolation of complexes with new structural motifs. We have used the tridenate ligand bis[(N'-tert-butylureido)-N-ethyl]-N-methylaminato ([H(2)1](2-)) that contains two hydrogen bond donors to examine the oxidation of the Fe(II)-acetate complex, [Fe(II)H(2)1(η(2)-OAc)](-) with dioxygen, amine N-oxides, and xylyl azide. A complex with Fe(III)-O-Fe(III) core results from the oxidation with dioxygen and amine N-oxides, in which the oxo ligand is involved in hydrogen bonding to the [H(2)1](2-) ligand. A distinctly different hydrogen bonding network was found in Fe(III) dimer isolated from the reaction with the xylyl azide: a rare Fe(III)-N(R)-Fe(III) core was observed that does not have hydrogen bonds to the bridging nitrogen atom. The intramolecular H-bond networks within these dimers appear to adjust to the presence of the bridging species and rearrange to its size and electron density.

3.
J Am Chem Soc ; 128(48): 15476-89, 2006 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17132015

RESUMO

Metal ion function depends on the regulation of properties within the primary and second coordination spheres. An approach toward studying the structure-function relationships within the secondary coordination sphere is to construct a series of synthetic complexes having constant primary spheres but structurally tunable secondary spheres. This was accomplished through the development of hybrid urea-carboxamide ligands that provide varying intramolecular hydrogen bond (H-bond) networks proximal to a metal center. Convergent syntheses prepared ligands [(N'-tert-butylureayl)-N-ethyl]-bis(N' '-R-carbamoylmethyl)amine (H(4)1R) and bis[(N'-tert-butylureayl)-N-ethyl]-(N' '-R-carbamoylmethyl)amine (H(5)2R), where R=isopropyl, cyclopentyl, and (S)-(-)-alpha-methylbenzyl. The ligands with isopropyl groups H(4)1iPr and H(5)2iPr were combined with tris[(N'-tert-butylureayl)-N-ethyl]amine (H6buea) and bis(N-isopropylcarbamoylmethyl)amine (H(3)0iPr) to prepare a series of Co(II) complexes with varying H-bond donors. [CoIIH(2)2iPr]- (two H-bond donors), [CoIIH1iPr]- (one H-bond donor), and [CoII0iPr]- (no H-bond donors) have trigonal monopyramidal primary coordination spheres as determined by X-ray diffraction methods. In addition, these complexes have nearly identical optical and EPR properties that are consistent with S=3/2 ground states. Electrochemical studies show a linear spread of 0.23 V in anodic potentials (Epa) with [CoIIH(2)2iPr]- being the most negative at -0.385 V vs [Cp2Fe]+/[Cp2Fe]. The properties of [CoIIH3buea]- (H3buea, tris[(N'-tert-butylureaylato)-N-ethyl]aminato that has three H-bond donors) appears to be similar to that of the other complexes based on spectroscopic data. [CoIIH3buea]- and [CoIIH(2)2iPr]- react with 0.5 equiv of dioxygen to afford [CoIIIH3buea(OH)]- and [CoIIIH(2)2iPr(OH)]-. Isotopic labeling studies confirm that dioxygen is the source of the oxygen atom in the hydroxo ligands: [CoIIIH3buea(16OH)]- has a -(O-H) band at 3589 cm-1 that shifts to 3579 cm-1 in [CoIIIH3buea(18OH)]-; [CoIIIH(2)2iPr(OH)]- has -(16O-H)=3661 and -(18O-H)=3650 cm-1. [CoIIH1iPr]- does not react with 0.5 equiv of O2; however, treating [CoIIH1iPr]- with excess dioxygen initially produces a species with an X-band EPR signal at g=2.0 that is assigned to a Co-O2 adduct, which is not stable and converts to a species having properties similar to those of the CoIII-OH complexes. Isolation of this hydroxo complex in pure form was complicated by its instability in solution (kint=2.5x10-7 M min-1). Moreover, the stability of the CoIII-OH complexes is correlated with the number of H-bond donors within the secondary coordination sphere; [CoIIIH3buea(OH)]- is stable in solution for days, whereas [CoIIIH(2)2iPr(OH)]- decays with a kint=5.9x10-8 M min-1. The system without any intramolecular H-bond donors [CoII0iPr]- does not react with dioxygen, even when O2 is in excess. These findings indicate a correlation between dioxygen binding/activation and the number of H-bond donors within the secondary coordination sphere of the cobalt complexes. Moreover, the properties of the secondary coordination sphere affect the stability of the CoIII-OH complexes with [CoIIIH3buea(OH)]- being the most stable. We suggest that the greater number of intramolecular H-bonds involving the hydroxo ligand reduces the nucleophilicity of the CoIII-OH unit and reinforces the cavity structure, producing a more constrained microenvironment around the cobalt ion.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Oxigênio/química , Amidas/química , Cátions , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Ureia/química
4.
J Agric Food Chem ; 51(25): 7352-8, 2003 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-14640583

RESUMO

The characterization of herbal materials is a significant challenge to analytical chemists. Goldenseal (Hydrastis canadensis L.), which has been chosen for toxicity evaluation by NIEHS, is among the top 15 herbal supplements currently on the market and contains a complex mixture of indigenous components ranging from carbohydrates and amino acids to isoquinoline alkaloids. One key component of herbal supplement production is botanical authentication, which is also recommended prior to initiation of efficacy or toxicological studies. To evaluate material available to consumers, goldenseal root powder was obtained from three commercial suppliers and a strategy was developed for characterization and comparison that included Soxhlet extraction, HPLC, GC-MS, and LC-MS analyses. HPLC was used to determine the weight percentages of the goldenseal alkaloids berberine, hydrastine, and canadine in the various extract residues. Palmatine, an isoquinoline alkaloid native to Coptis spp. and other common goldenseal adulterants, was also quantitated using HPLC. GC-MS was used to identify non-alkaloid constituents in goldenseal root powder, whereas LC-MS was used to identify alkaloid components. After review of the characterization data, it was determined that alkaloid content was the best biomarker for goldenseal. A 20-min ambient extraction method for the determination of alkaloid content was also developed and used to analyze the commercial material. All three lots of purchased material contained goldenseal alkaloids hydrastinine, berberastine, tetrahydroberberastine, canadaline, berberine, hydrastine, and canadine. Material from a single supplier also contained palmatine, coptisine, and jatrorrhizine, thus indicating that the material was not pure goldenseal. Comparative data for three commercial sources of goldenseal root powder are presented.


Assuntos
Hydrastis/química , Raízes de Plantas/química , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Suplementos Nutricionais/normas , Suplementos Nutricionais/toxicidade , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
5.
J AOAC Int ; 86(3): 476-83, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12852562

RESUMO

A fast, practical ambient extraction methodology followed by isocratic liquid chromatography (LC) analysis with UV detection was validated for the determination of berberine, hydrastine, and canadine in goldenseal (Hydrastis canadensis L.) root powder. The method was also validated for palmatine, a major alkaloid present in the possible bioadulterants Coptis, Oregon grape root, and barberry bark. Alkaloid standard solutions were linear over the evaluated concentration ranges. The analytical method was linear for alkaloid extraction using 0.3-2 g goldenseal root powder/100 mL extraction solvent. Precision of the method was demonstrated using 10 replicate extractions of 0.5 g goldenseal root powder, with percent relative standard deviation for all 4 alkaloids < or = 1.6. Alkaloid recovery was determined by spiking each alkaloid into triplicate aliquots of neat goldenseal root powder. Recoveries ranged from 92.3% for palmatine to 101.9% for hydrastine. Ruggedness of the method was evaluated by performing multiple analyses of goldenseal root powder from 3 suppliers over a 2-year period. The method was also used to analyze Coptis root, Oregon grape root, barberry bark, and celandine herb, which are possible goldenseal bioadulterants. The resulting chromatographic profiles of the bioadulterants were significantly different from that of goldenseal. The method was directly transferred to LC with mass spectrometry, which was used to confirm the presence of goldenseal alkaloids tetrahydroberberastine, berberastine, canadaline, berberine, hydrastine, and canadine, as well as alkaloids from the bioadulterants, including palmatine, jatrorrhizine, and coptisine.


Assuntos
Alcaloides/análise , Hydrastis/química , Raízes de Plantas/química , Cromatografia Líquida , Espectrometria de Massas , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...