Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 15(11): 3931-41, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25233035

RESUMO

The equipment of cellulose ultrathin films with BSA (bovine serum albumin) via cationization of the surface by tailor-made cationic celluloses is described. In this way, matrices for controlled protein deposition are created, whereas the extent of protein affinity to these surfaces is controlled by the charge density and solubility of the tailored cationic cellulose derivative. In order to understand the impact of the cationic cellulose derivatives on the protein affinity, their interaction capacity with fluorescently labeled BSA is investigated at different concentrations and pH values. The amount of deposited material is quantified using QCM-D (quartz crystal microbalance with dissipation monitoring, wet mass) and MP-SPR (multi-parameter surface plasmon resonance, dry mass), and the mass of coupled water is evaluated by combination of QCM-D and SPR data. It turns out that adsorption can be tuned over a wide range (0.6-3.9 mg dry mass m(-2)) depending on the used conditions for adsorption and the type of employed cationic cellulose. After evaluation of protein adsorption, patterned cellulose thin films have been prepared and the cationic celluloses were adsorbed in a similar fashion as in the QCM-D and SPR experiments. Onto these cationic surfaces, fluorescently labeled BSA in different concentrations is deposited by an automatized spotting apparatus and a correlation between the amount of the deposited protein and the fluorescence intensity is established.


Assuntos
Celulose/química , Celulose/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Adsorção/fisiologia , Animais , Cátions , Bovinos , Ligação Proteica/fisiologia , Propriedades de Superfície
2.
Langmuir ; 29(44): 13388-95, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24050780

RESUMO

Molecular assemblies, namely, polyelectrolyte complexes (PECs) composed of negatively charged xylan-based derivatives and a novel positively charged cellulose derivative (CN(+)), were used for interfacial modification of wood fibers by charge directed self-assembly. The adsorption process was studied using polyelectrolyte titration and elemental analysis. X-ray spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used as advanced techniques for the characterization of the modified fiber surfaces. The measurements revealed an intense interaction between the pulp fibers and PECs, and provided essential information for a better understanding of the adsorption process. The information gathered on this paper might contribute to the basis for the development of new value added products by the use of underutilized biomass.


Assuntos
Celulose/química , Absorção , Sulfatos/química , Propriedades de Superfície
3.
Carbohydr Polym ; 92(2): 1046-53, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399127

RESUMO

The adsorption behavior of cellulose-4-[N-methylammonium]butyrate chloride (CMABC) on two hydrophilic substrates is studied, namely nanometric cellulose model thin films and silicon dioxide substrates. The adsorption is quantified in dependence of electrolyte concentration and pH value using a quartz crystal microbalance with dissipation (QCM-D). In case of CMABC, at high ionic strengths (25-100 mM NaCl) high adsorption is observed at pH 7 (Δf(3): -15 to -17 Hz) while at lower ionic strengths (1-10 mM) less CMABC (Δf(3): -2 to -12 Hz) is deposited on the cellulose surfaces as indicated by the frequency changes using QCM-D. A change in pH value from 7 to 8 reveals an increase in adsorption. Atomic force microscopy shows that the coating of cellulose thin films with CMABC changes the morphology from a fibrillar to a particle like structure on the surface. The surface wettability with water increases with an increasing amount of CMABC on the surface compared to neat cellulose model films. At lower pH values (3 and 5), CMABC does not adsorb onto the cellulose model thin films. XPS is used to validate the results and to determine the nitrogen content of the surfaces. In addition, adsorption of CMABC onto another hydrophilic and negatively charged substrate, silicon dioxide coated quartz crystals, cannot be detected at different pH values and electrolyte concentrations as proven by QCM-D.


Assuntos
Aminobutiratos/química , Celulose/análogos & derivados , Celulose/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...