Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105543

RESUMO

Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.

2.
Nucleic Acids Res ; 50(17): 9838-9857, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36124662

RESUMO

High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFß-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Cromatina , Via de Sinalização Hippo , Histonas/metabolismo , Humanos , Proteômica , RNA Interferente Pequeno , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética
3.
Elife ; 112022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904415

RESUMO

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Mamíferos/metabolismo , Manganês/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Rep ; 12(1): 10059, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768448

RESUMO

The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A ß-lactamases, two subclass B1 and two subclass B3 metallo-ß-lactamases, one class D ß-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing ß-lactamase ORFs with a single base substitution, which substantially increase their ß-lactamase activity and resistance level. None of the mutations affect ß-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant ß-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels.


Assuntos
Resistência beta-Lactâmica , beta-Lactamases , Antibacterianos/farmacologia , Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Solo , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...