Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 40(24): e108307, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34786730

RESUMO

Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.


Assuntos
Autoantígenos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Código das Histonas , Histonas/química , Humanos , Nucleossomos/metabolismo , Domínios Proteicos
2.
Biotechnol Prog ; 37(6): e3192, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323013

RESUMO

Cell line development (CLD) represents a critical, yet time-consuming, step in the biomanufacturing process as significant resources are devoted to the scale-up and screening of several hundreds to thousands of single-cell clones. Typically, transfected pools are fully recovered from selection and characterized for growth, productivity, and product quality to identify the best pools suitable for single-cell cloning (SCC) using limiting dilution or fluorescence-activated cell sorting (FACS). Here we report the application of the Berkeley Lights Beacon Instrument (BLI) in an early SCC process to accelerate the CLD timeline. Transfected pools were single-cell cloned when viabilities reached greater than 85% or during selection when viabilities were less than 30%. Clones isolated from these accelerated processes exhibited comparable growth, productivity, and product quality to those derived from a standard CLD process and fit into an existing manufacturing platform. With these approaches, up to a 30% reduction in the overall CLD timeline was achieved. Furthermore, early process-derived clones demonstrated equivalent long-term stability compared with standard process-derived clones over 50 population doubling levels (PDLs). Taken together, the data supported early SCC on the BLI as an attractive approach to reducing the standard CLD timeline while still identifying clones with acceptable manufacturability.


Assuntos
Clonagem Molecular/métodos , Citometria de Fluxo/métodos , Dispositivos Lab-On-A-Chip , Análise de Célula Única/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Técnicas Analíticas Microfluídicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Biotechnol J ; 15(1): e1900247, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743597

RESUMO

During biomanufacturing cell lines development, the generation and screening for single-cell derived subclones using methods that enable assurance of clonal derivation can be resource- and time-intensive. High-throughput miniaturization, automation, and analytic strategies are often employed to reduce such bottlenecks. The Beacon platform from Berkeley Lights offers a strategy to eliminate these limitations through culturing, manipulating, and characterizing cells on custom nanofluidic chips via software-controlled operations. However, explicit demonstration of this technology to provide high assurance of a single cell progenitor has not been reported. Here, a methodology that utilizes the Beacon instrument to ensure high levels of clonality is described. It is demonstrated that the Beacon platform can efficiently generate production cell lines with a superior clonality data package, detailed tracking, and minimal resources. A stringent in-process quality control strategy is established to enable rapid verification of clonal origin, and the workflow is validated using representative Chinese hamster ovary-derived cell lines stably expressing either green or red fluorescence protein. Under these conditions, a >99% assurance of clonal origin is achieved, which is comparable to existing imaging-coupled fluorescence-activated cell sorting seeding methods.


Assuntos
Biotecnologia/métodos , Linhagem Celular , Células Clonais , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Luminescentes/genética , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Análise de Célula Única
4.
Dev Cell ; 47(3): 348-362.e7, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293838

RESUMO

Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Replicação do DNA , Proteínas de Ligação a DNA/genética , Epigenômica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Mitose/fisiologia , Nucleossomos/genética , Fase S
5.
Curr Opin Cell Biol ; 52: 126-135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29621654

RESUMO

Accurate chromosome segregation is critical to ensure the faithful inheritance of the genome during cell division. Human chromosomes distinguish the location of the centromere from general chromatin by the selective assembly of CENP-A containing nucleosomes at the active centromere. The location of centromeres in most higher eukaryotes is determined epigenetically, independent of DNA sequence. CENP-A containing centromeric chromatin provides the foundation for assembly of the kinetochore that mediates chromosome attachment to the microtubule spindle and controls cell cycle progression in mitosis. Here we review recent work demonstrating the role of posttranslational modifications on centromere function and CENP-A inheritance via the direct modification of the CENP-A nucleosome and pre-nucleosomal complexes, the modification of the CENP-A deposition machinery and the modification of histones within existing centromeres.


Assuntos
Sequência de Bases/genética , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , Humanos
6.
Prog Mol Subcell Biol ; 56: 165-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28840237

RESUMO

Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.


Assuntos
Centrômero/metabolismo , Nucleossomos/metabolismo , Centrômero/química , Proteína Centromérica A/metabolismo , Humanos , Nucleossomos/química
7.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481226

RESUMO

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Assuntos
Megacariócitos/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Recém-Nascido , Células K562 , Camundongos Endogâmicos C57BL , Ativação Transcricional
8.
Dev Cell ; 37(2): 105-6, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27093076

RESUMO

Centromeres of higher eukaryotes are defined by the epigenetic inheritance of the centromere-specific CENP-A nucleosome. Reporting in Developmental Cell, Rosin and Mellone (2016) show that co-evolution of the CENP-A histone variant and its chaperone CAL1 accounts for species incompatibility between centromeric histones in Drosophila.


Assuntos
Centrômero , Histonas , Animais , Drosophila , Proteínas de Drosophila , Nucleossomos
9.
Mol Cell ; 61(5): 774-787, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942680

RESUMO

Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-ß C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18ß form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-ß heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-ß heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Telófase , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transdução de Sinais , Transfecção
10.
Protein Sci ; 25(3): 720-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660914

RESUMO

The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.


Assuntos
Cristalização/métodos , Proteínas/química , Acetiltransferases/química , Acetiltransferases/isolamento & purificação , Animais , Artefatos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Reprodutibilidade dos Testes , Fator sigma/química , Fator sigma/isolamento & purificação , Staphylococcus aureus/química , Survivina , Xenopus/metabolismo , Proteínas de Xenopus/química
11.
EMBO J ; 32(15): 2113-24, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23771058

RESUMO

The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A-histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Multimerização Proteica/fisiologia , Autoantígenos/genética , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...