Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 84(16): 10040-10049, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315394

RESUMO

1,3,4-Thiadiazole, 2,2'-bi(1,3,4-thiadiazole), 2,2':5',2″-ter(1,3,4-thiadiazole), and 2,2':5',2″:5″,2‴-quater(1,3,4-thiadiazole) symmetrically disubstituted with 3-alkyl-(2,2'-bithiophen)-5-yl were synthesized by new procedures using readily available ethyl 3-alkyl-(2,2'-bithiophene)-5-carboxylate as a convenient substrate. These new compounds with a fixed number of donor rings and increasing number of acceptor rings showed very interesting, tunable redox properties. In particular, they exhibited electron affinities (EAs) ranging from -3.06 to -3.83 eV, reaching EA values desired for air-operating n-type organic semiconductors. Their electrochemically determined ionization potentials were only moderately dependent on the number of thiadiazole rings, varying from 5.83 to 6.01 eV. Emission spectra of these compounds could also be tuned in a wide range (from 470 to 600 nm). Spectroscopic and electrochemical data were confirmed by density functional theory calculations demonstrating full consistency.

2.
Phys Chem Chem Phys ; 19(44): 30261-30276, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29110005

RESUMO

A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.

3.
Chemistry ; 23(12): 2839-2851, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28059477

RESUMO

Two low molecular weight electroactive donor-acceptor-donor (DAD)-type molecules are reported, namely naphthalene bisimide (NBI) symmetrically core-functionalized with dithienopyrrole (NBI-(DTP)2 ) and an asymmetric core-functionalized naphthalene bisimide with dithienopyrrole (DTP) substituent on one side and 2-ethylhexylamine on the other side (NBI-DTP-NHEtHex). Both compounds are characterized by low optical bandgaps (1.52 and 1.65 eV, respectively). NBI-(DTP)2 undergoes oxidative electropolymerization giving the electroactive polymer of ambipolar character. Its two-step reversible reduction and oxidation is corroborated by complementary EPR and UV/Vis-NIR spectroelectrochemical investigations. The polymer turned out to be electrochemically active not only in aprotic solvents but also in aqueous electrolytes, showing a distinct photocathodic current attributed to proton reduction. Additionally, poly(NBI-(DTP)2 ) was successfully tested as a photodiode material.

4.
Macromol Rapid Commun ; 36(19): 1749-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218573

RESUMO

The formation of a poly(2,6-carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5-bis(9-octyl-9H-carbazol-2-yl)pyridine and 3,5-bis(9-octyl-9H-carbazol-3-yl)pyridine by electrochemical and UV-Vis-NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6-carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.


Assuntos
Carbazóis/química , Polímeros/síntese química , Técnicas Eletroquímicas , Oxirredução , Polímeros/química , Teoria Quântica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...