Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0285833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450438

RESUMO

The biogenesis of ribosomes requires tightly controlled transcription and processing of pre-rRNA which comprises ribosomal RNAs forming the core of large and small ribosomal subunits. Early steps of the pre-rRNA processing and assembly of the ribosomal subunits require a large set of proteins that perform folding and nucleolytic cleavage of pre-rRNAs in the nucleoli. Structure and functions of proteins involved in the pre-rRNA processing have been extensively studied in the budding yeast S. cerevisiae. Functional characterization of their human homologues is complicated by the complexity of mammalian ribosomes and increased number of protein factors involved in the ribosomal biogenesis. Homologues of human nucleolar protein SURF6 from yeast and mouse, Rrp14 and Surf6, respectively, had been shown to be involved in the early steps of pre-rRNA processing. Rrp14 works as RNA chaperone in complex with proteins Ssf1 and Rrp15. Human SURF6 knockdown and overexpression were used to clarify a role of SURF6 in the early steps of pre-rRNA processing in human cell lines HeLa and HTC116. By analyzing the abundance of the rRNA precursors in cells with decreased level or overexpression of SURF6, we demonstrated that human SURF6 is involved in the maturation of rRNAs from both small and large ribosomal subunits. Changes in the SURF6 level caused by knockdown or overexpression of the protein do not result in the death of HeLa cells in contrast to murine embryonic fibroblasts, but significantly alter the distribution of cells among the phases of the cell cycle. SURF6 knockdown in both p53 sufficient and p53 deficient HCT116 human cancer cells results in elongation of G0/G1 and shortening of G2/M phase. This surprising result suggests p53 independence of SURF6 effects on the cell cycle and possible multiple functions of SURF6. Our data point to the shift from pathway 1 to pathway 2 of the rRNA biogenesis caused by the SURF6 knockdown and its likely association with p53 pathway.


Assuntos
Proteínas Nucleares , Precursores de RNA , Humanos , Células HeLa , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Front Biosci (Landmark Ed) ; 28(2): 25, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866555

RESUMO

In the present era of global warming and dramatically increased environmental pollution posing a threat to animal life, the understanding and manipulation of organisms' resources of stress tolerance is apparently a question of survival. Heat stress and other forms of stressful factors induce a highly organized response of organisms at the cellular level where heat shock proteins (Hsps) and in particular Hsp70 family of chaperones are among the major players in the protection from the environmental challenge. The present review article summarizes the peculiarities of the Hsp70 family of proteins protective functions being a result of many millions of years of adaptive evolution. It discusses the molecular structure and specific details of hsp70 gene regulation in various organisms, living in diverse climatic zones, with a special emphasis on the protective role of Hsp70 in adverse conditions of the environment. The review discusses the molecular mechanisms underlying Hsp70-specific properties that emerged in the course of adaptation to harsh environmental conditions. This review also includes the data on the anti-inflammatory role of Hsp70 and the involvement of endogenous and recombinant Hsp70 (recHsp70) in proteostatic machinery in various pathologies including neurodegenerative ones such as Alzheimer's and Parkinson's diseases in rodent model organisms and humans in vivo and in vitro. Specifically, the role of Hsp70 as an indicator of disease type and severity and the use of recHsp70 in several pathologies are discussed. The review discusses different roles exhibited by Hsp70 in various diseases including the dual and sometimes antagonistic role of this chaperone in various forms of cancer and viral infection including the SARS-Cov-2 case. Since Hsp70 apparently plays an important role in many diseases and pathologies and has significant therapeutic potential there is a dire need to develop cheap recombinant Hsp70 production and further investigate the interaction of externally supplied and endogenous Hsp70 in chaperonotherapy.


Assuntos
Adaptação Fisiológica , Proteínas de Choque Térmico HSP70 , Animais , Humanos , COVID-19 , Proteínas de Choque Térmico HSP70/genética , Doença de Parkinson , Neoplasias , Doença de Alzheimer
3.
Biomedicines ; 10(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36140256

RESUMO

The ongoing epidemic caused by SARS-CoV-2 infection led to the search for fundamentally new ways and means to combat inflammation and other pathologies caused by this virus. Using a cellular model of lipopolysaccharide (LPS)-induced sepsis (human promonocytes), we showed that both a hydrogen sulfide donor (sodium thiosulfate, STS) and a recombinant Heat shock protein 70 (rHsp70) effectively block all major inflammatory mediators when administrated before and after LPS challenge. The protective anti-inflammatory effect of rHsp70 and H2S was also confirmed in vivo using various animal models of pneumonia. Specifically, it was found that rHsp70 injections prevented the development of the acute respiratory distress syndrome in highly pathogenic pneumonia in mice, increased animal survival, and reduced the number of Programmed death-1 (PD-1)-positive T-lymphocytes in peripheral blood. Based on our model experiments we developed a combined two-phase therapeutic approach for the treatment of COVID-19 patients. This procedure includes the inhalation of hot helium-oxygen mixtures for induction of endogenous Hsp70 in the first phase and STS inhalation in the second phase. The use of this approach has yielded positive results in COVID-19 patients, reducing the area of lung lesions, restoring parameters of innate immunity and T-cell immune response against coronavirus infection, and preventing the development of pulmonary fibrosis and immune exhaustion syndrome.

4.
Biomolecules ; 12(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740876

RESUMO

The gasotransmitter hydrogen sulfide (H2S) produced by the transsulfuration pathway (TSP) is an important biological mediator, involved in many physiological and pathological processes in multiple higher organisms, including humans. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in H2S production and metabolism. Here, we investigated the role of H2S in learning and memory processes by exploring several Drosophila melanogaster strains with single and double deletions of CBS and CSE developed by the CRISPR/Cas9 technique. We monitored the learning and memory parameters of these strains using the mating rejection courtship paradigm and demonstrated that the deletion of the CBS gene, which is expressed predominantly in the central nervous system, and double deletions completely block short- and long-term memory formation in fruit flies. On the other hand, the flies with CSE deletion preserve short- and long-term memory but fail to exhibit long-term memory retention. Transcriptome profiling of the heads of the males from the strains with deletions in Gene Ontology terms revealed a strong down-regulation of many genes involved in learning and memory, reproductive behavior, cognition, and the oxidation-reduction process in all strains with CBS deletion, indicating an important role of the hydrogen sulfide production in these vital processes.


Assuntos
Sulfeto de Hidrogênio , Animais , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sulfeto de Hidrogênio/metabolismo , Masculino
5.
Mech Ageing Dev ; 203: 111656, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247392

RESUMO

The gasotransmitter hydrogen sulfide (H2S) is an important biological mediator, playing an essential role in many physiological and pathological processes. It is produced by transsulfuration - an evolutionarily highly conserved pathway for the metabolism of sulfur-containing amino acids methionine and cysteine. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in cysteine metabolism and H2S production. Here we investigated the fitness components (longevity, stress resistance, viability of preimaginal stages, and reproductive function parameters) in D. melanogaster lines containing deletions of the CBS and CSE genes. Surprisingly, in most tests, CSE deletion improved, and CBS worsened the fitness. Lines with deletion of both CBS and CSE demonstrated better stress resistance and longevity than lines with single CBS deletion. At the same time, deletion of both CBS and CSE genes causes more serious disturbances of reproductive function parameters than single CBS deletion. Thus, a complex interaction of H2S-producing pathways and cellular stress response in determining the lifespan and fitness components of the whole organism was revealed.


Assuntos
Cistationina gama-Liase , Sulfeto de Hidrogênio , Animais , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cisteína , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sulfeto de Hidrogênio/metabolismo , Longevidade
6.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210082

RESUMO

Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer's disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Memória , Neuroproteção , Fatores de Transcrição/metabolismo , Animais , Humanos , Sinapses/metabolismo
7.
Chromosome Res ; 27(1-2): 95-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604344

RESUMO

Ribosomal DNA (rDNA) gene codes for 18S, 5.8S, and 28S rRNA form tandem repetitive clusters, which occupy distinct chromosomal loci called nucleolar organizer regions (NORs). The number and position of NORs on chromosomes are genetic characteristics of the species although within a cell, the NOR sizes can significantly vary due to loss or multiplication of rDNA copies. In the current study, we used mouse L929 fibroblasts, the aneuploid cells which differ in the FISH- and Ag-NOR numbers, to examine whether the parental NOR variability is inherited in clones. By statistical analysis, we showed that the cloned fibroblasts were able to restore the NOR numerical characteristics of the parental cells after long-term culturing. These results support the idea that mammalian cells may have mechanisms which control the number and activity of NORs at the population level. In L929 fibroblasts, we also regularly observed laterally asymmetry of FISH-NORs that evidenced in an unequal distribution of the mother rDNA copies between the daughter cells in mitosis.


Assuntos
Instabilidade Cromossômica , Fibroblastos/metabolismo , Região Organizadora do Nucléolo/genética , Animais , Linhagem Celular Tumoral , Cromossomos , Células Clonais , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Camundongos , Sequências Repetitivas de Ácido Nucleico
8.
Oncotarget ; 8(61): 102934-102947, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262535

RESUMO

Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR's target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively - xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.

9.
Front Genet ; 8: 123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979292

RESUMO

Genomic disorders, the syndromes with multiple manifestations, may occur sporadically due to unequal recombination in chromosomal regions with specific architecture. Therefore, each patient may carry an individual structural variant of DNA sequence (SV) with small insertions and deletions (INDELs) sometimes less than 10 bp. The transposable elements of the Tc1/mariner superfamily are often associated with hotspots for homologous recombination involved in human genetic disorders, such as Williams Beuren Syndromes (WBS) with LIM-kinase 1-dependent cognitive defects. The Drosophila melanogaster mutant agnts3 has unusual architecture of the agnostic locus harboring LIMK1: it is a hotspot of chromosome breaks, ectopic contacts, underreplication, and recombination. Here, we present the analysis of LIMK1-containing locus sequencing data in agnts3 and three D. melanogaster wild-type strains-Canton-S, Berlin, and Oregon-R. We found multiple strain-specific SVs, namely, single base changes and small INDEls. The specific feature of agnts3 is 28 bp A/T-rich insertion in intron 1 of LIMK1 and the insertion of mobile S-element from Tc1/mariner superfamily residing ~460 bp downstream LIMK1 3'UTR. Neither of SVs leads to amino acid substitutions in agnts3 LIMK1. However, they apparently affect the nucleosome distribution, non-canonical DNA structure formation and transcriptional factors binding. Interestingly, the overall expression of miRNAs including the biomarkers for human neurological diseases, is drastically reduced in agnts3 relative to the wild-type strains. Thus, LIMK1 DNA structure per se, as well as the pronounced changes in total miRNAs profile, probably lead to LIMK1 dysregulation and complex behavioral dysfunctions observed in agnts3 making this mutant a simple plausible Drosophila model for WBS.

10.
Cell Cycle ; 16(20): 1979-1991, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28873013

RESUMO

The nucleolar proteins which link cell proliferation to ribosome biogenesis are regarded to be potentially oncogenic. Here, in order to examine the involvement of an evolutionary conserved nucleolar protein SURF6/Rrp14 in proliferation and ribosome biogenesis in mammalian cells, we established stably transfected mouse NIH/3T3 fibroblasts capable of conditional overexpression of the protein. Cell proliferation was monitored in real-time, and various cell cycle parameters were quantified based on flow cytometry, Br-dU-labeling and conventional microscopy data. We show that overexpression of SURF6 accelerates cell proliferation and promotes transition through all cell cycle phases. The most prominent SURF6 pro-proliferative effects include a significant reduction of the population doubling time, from 19.8 ± 0.7 to 16.2 ± 0.5 hours (t-test, p < 0.001), and of the length of cell division cycle, from 17.6 ± 0.6 to 14.0 ± 0.4 hours (t-test, p < 0.001). The later was due to the shortening of all cell cycle phases but the length of G1 period was reduced most, from 5.7 ± 0.4 to 3.8 ± 0.3 hours, or by ∼30%, (t-test, p < 0.05). By Northern blots and qRT-PCR, we further showed that the acceleration of cell proliferation was concomitant with an accumulation of rRNA species along both ribosomal subunit maturation pathways. It is evident, therefore, that like the yeast homologue Rrp14, mammalian SURF6 is involved in various steps of rRNA processing during ribosome biogenesis. We concluded that SURF6 is a novel positive regulator of proliferation and G1/S transition in mammals, implicating that SURF6 is a potential oncogenic protein, which can be further studied as a putative target in anti-cancer therapy.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Citometria de Fluxo , Camundongos , Células NIH 3T3 , Fenótipo , RNA Ribossômico/metabolismo , Fatores de Tempo , Transfecção
11.
Cell Stress Chaperones ; 22(5): 687-697, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28447215

RESUMO

The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Reprod Fertil Dev ; 29(3): 509-520, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26376167

RESUMO

Early embryos of all mammalian species contain morphologically distinct but transcriptionally silent nucleoli called the nucleolar precursor bodies (NPBs), which, unlike normal nucleoli, have been poorly studied at the biochemical level. To bridge this gap, here we examined the occurrence of RNA and proteins in early mouse embryos with two fluorochromes - an RNA-binding dye pyronin Y (PY) and the protein-binding dye fluorescein-5'-isothiocyanate (FITC). The staining patterns of zygotic NPBs were then compared with those of nucleolus-like bodies (NLBs) in fully grown surrounded nucleolus (SN)-type oocytes, which are morphologically similar to NPBs. We show that both entities contain proteins, but unlike NLBs, NPBs are significantly impoverished for RNA. Detectable amounts of RNA appear on the NPB surface only after resumption of rDNA transcription and includes pre-rRNAs and 28S rRNA as evidenced by fluorescence in situ hybridisation with specific oligonucleotide probes. Immunocytochemical assays demonstrate that zygotic NPBs contain rRNA processing factors fibrillarin, nucleophosmin and nucleolin, while UBF (the RNA polymerase I transcription factor) and ribosomal proteins RPL26 and RPS10 are not detectable. Based on the results obtained and data in the contemporary literature, we suggest a scheme of NPB assembly and maturation to normal nucleoli that assumes utilisation of maternally derived nucleolar proteins but of nascent rRNAs.


Assuntos
Nucléolo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Nucleares/metabolismo , RNA/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Camundongos , Nucleofosmina , Fosfoproteínas/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Nucleolina
13.
Cell Stress Chaperones ; 21(6): 1055-1064, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511022

RESUMO

The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Leite/metabolismo , Animais , Feminino , Proteínas de Choque Térmico HSP70/genética , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Redobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
14.
Data Brief ; 7: 1179-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27408920

RESUMO

Here we provide data on accessibility of nucleolus-like bodies (NLBs) of fully-grown (GV) mouse oocytes to fluorescence in situ hybridization (FISH) probes and anti-nucleolar antibodies as well as on oocyte general morphology and large scale chromatin configuration, which relate to the research article "High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes" (Shishova et al., 2015 [1]). Experimental factors include: a cross-linking reagent formaldehyde and two denaturing fixatives, such as 70% ethanol and a mixture of absolute methanol and glacial acetic acid (3:1, v/v).

15.
Biochim Biophys Acta ; 1864(6): 738-746, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26945516

RESUMO

Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 ß subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.


Assuntos
Nucleopoliedrovírus/patogenicidade , Complexo de Endopeptidases do Proteassoma/química , Proteômica , Spodoptera/citologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Trends Mol Med ; 21(11): 663-672, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26494190

RESUMO

In 1999, Tesarik and Greco reported that they could predict the developmental potential of human zygotes from a single static evaluation of their pronuclei. This was based on the distribution and number of specific nuclear organelles - the nucleoli. Recent studies in mice show that nucleoli play a key role in parental genome restructuring after fertilization, and that interfering with this process may lead to developmental failure. These studies thus support the Tesarik-Greco evaluation as a potentially useful method for selecting high-quality embryos in human assisted reproductive technologies. In this opinion article we discuss recent evidence linking nucleoli to parental genome reprogramming, and ask whether nucleoli can mirror or be used as representative markers of embryonic parameters such as chromosome content or DNA fragmentation.


Assuntos
Nucléolo Celular/genética , Embrião de Mamíferos/embriologia , Oócitos/citologia , Zigoto/citologia , Animais , Nucléolo Celular/metabolismo , Fragmentação do DNA , Embrião de Mamíferos/metabolismo , Epigênese Genética , Fertilização , Genoma Humano , Humanos , Camundongos , Oócitos/metabolismo , Técnicas de Reprodução Assistida , Zigoto/metabolismo
17.
Curr Drug Deliv ; 12(5): 524-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26205901

RESUMO

Over the last decade, it has become evident that in mammals, including humans, heat shock protein 70 (HSP70), apart from its intracellular localization, is found in extracellular space, where it may execute various protective functions. Furthermore, the upregulation of HSP70 family members can be beneficial in the prevention and treatment of various human neurodegenerative diseases and cancer. Here, we demonstrate that recombinant human HSP70 after intranasal administration can penetrate various brain regions of mice in its native form and subsequently undergo rapid degradation. It was also shown that labeled HSP70 added to culture medium of different human and mouse cell lines enters the cells with strikingly different kinetics, which positively correlates with the basic levels of membrane bound Toll-like receptors (TLR) that are characteristic of these cell lines. HSP70 administration does not significantly modulate the level of TLR expression at the protein or RNA level. The degradation of the introduced recombinant HSP70 after entering the cells is likely proteasome-dependent and varies significantly depending on the cells type and origin. These results should be considered when developing HSP70-based therapies.


Assuntos
Proteínas de Choque Térmico HSP70/administração & dosagem , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Administração Intranasal , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Choque Térmico HSP70/química , Humanos , Cinética , Camundongos , Camundongos Endogâmicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
Exp Cell Res ; 337(2): 208-18, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226217

RESUMO

Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin.


Assuntos
Nucléolo Celular/metabolismo , Genes de RNAr/genética , Oócitos/metabolismo , Precursores de RNA/ultraestrutura , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Animais , Nucléolo Celular/ultraestrutura , Feminino , Immunoblotting , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células NIH 3T3 , Oócitos/citologia , Processamento Pós-Transcricional do RNA
19.
PLoS One ; 10(2): e0115536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700087

RESUMO

Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality.


Assuntos
Proteínas de Choque Térmico/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Camelus/genética , Linhagem Celular , Drosophila melanogaster/genética , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Dados de Sequência Molecular , Especificidade da Espécie , TATA Box , Ativação Transcricional
20.
Dev Biol ; 397(2): 267-81, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25481757

RESUMO

It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA.


Assuntos
Nucléolo Celular/química , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Ribossômico/metabolismo , Laranja de Acridina , Animais , Endopeptidase K , Feminino , Fluoresceína-5-Isotiocianato , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Células NIH 3T3 , Nucleofosmina , Oligonucleotídeos/genética , Oócitos/citologia , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...