Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 25(1): e12691, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378732

RESUMO

Cessation from prolonged use of ∆9 -tetrahydrocannabinol (THC), the primary active compound responsible for the cannabimimetic effects of cannabis, results in a mild to moderate withdrawal syndrome in humans and laboratory animals. Whereas manipulations of the endogenous cannabinoid system (eg, cannabinoid receptors and endocannabinoid regulating enzymes) alter nicotine withdrawal, in this study we asked the reciprocal question. Do nicotinic acetylcholine receptors (nAChRs) modulate THC withdrawal? To assess the role of different nAChR subtypes in THC withdrawal, we used transgenic mouse, preclinical pharmacological, and human genetic correlation approaches. Our findings show that selective α3ß4* nAChR antagonist, AuIB, and α3ß4* nAChR partial agonist, AT-1001, dose-dependently attenuated somatic withdrawal signs in THC-dependent mice that were challenged with the cannabinoid-1 receptor antagonist rimonabant. Additionally, THC-dependent α5 and α6 nAChR knockout (KO) mice displayed decreased rimonabant precipitated somatic withdrawal signs compared with their wild-type counterparts. In contrast, ß2 and α7 nAChR KO mice showed no alterations in THC withdrawal signs. Moreover, deletion of ß2 nAChR did not alter the reduced expression of somatic signs by the preferred α6ß4* antagonist, BulA [T5A;P60]. Finally, the human genetic association studies indicated that variations in the genes that code for the α5, α3, ß4, and α6 nAChRs were associated with cannabis disorder phenotypes. Overall, these findings suggest that α3ß4* and α6ß4* nAChR subtypes represent viable targets for the development of medications to counteract THC dependence.


Assuntos
Dronabinol/farmacologia , Abuso de Maconha/fisiopatologia , Receptores Nicotínicos/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Antagonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rimonabanto/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...