Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1748, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700326

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 1135, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555906

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3- and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3--N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3- explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...