Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cureus ; 15(6): e39880, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37404433

RESUMO

Posterior urethral valves (PUV) are an uncommon urologic congenital anomaly in males often discovered antenatally and more rarely after birth. PUV can lead to obstructive nephropathy and voiding dysfunction, putting patients at increased risk for irreversible renal damage and subsequent progression to end-stage renal disease. Much of the renal damage caused by PUV is proportional to the amount of time that the kidney has been experiencing retrograde pressure. Although much debate exists within the field, spontaneous decompression within the collecting system (e.g., "pop-off" valve) such as urinoma formation or spontaneous ascites has been found to relieve pressure on and thus protect the kidney, decreasing the risk of progression to advanced stages of chronic kidney disease. Despite the significant mass effect on the renal parenchyma, the pressure-relieving function of urinoma formation is a net protective factor allowing renal function to be preserved. We report a unique case of antenatal detection of PUV in a male with postnatal complicated urinoma formation secondary to forniceal rupture. Remarkably, despite significant external compression of the kidney and the development of urosepsis from infection of the urinoma with a multidrug-resistant organism that required percutaneous drainage, renal function was preserved throughout the disease course. After ablation of the PUV and drainage of the septic urinoma, the patient recovered rapidly after intervention and was ultimately discharged in stable condition.

2.
Matrix Biol ; 121: 149-166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391162

RESUMO

In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Adesão Celular , Colite/induzido quimicamente , Colite/genética , Ácido Hialurônico/metabolismo , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo
3.
Genet Med ; 22(3): 524-537, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578471

RESUMO

PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. CONCLUSIONS: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição SOXD/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Adulto Jovem
4.
Blood ; 134(9): 765-775, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31262781

RESUMO

Platelets are specialized cells essential for hemostasis that also function as crucial effectors capable of mediating inflammatory and immune responses. These sentinels continually survey their environment and discriminate between homeostatic and danger signals such as modified components of the extracellular matrix. The glycosaminoglycan hyaluronan (HA) is a major extracellular matrix component that coats the vascular lumen and, under normal conditions, restricts access of inflammatory cells. In response to tissue damage, the endothelial HA matrix enhances leukocyte recruitment and regulates the early stages of the inflammatory response. We have shown that platelets can degrade HA from the surface of activated endothelial cells via the enzyme hyaluronidase-2 (HYAL2) and that HYAL2 is deficient in platelets isolated from patients with inflammatory bowel disease (IBD). Platelets are known to be involved in the pathogenesis of several chronic disease states, including IBD, but they have been largely overlooked in the context of intestinal inflammation. We therefore wanted to define the mechanism by which platelet HYAL2 regulates the inflammatory response during colitis. In this study, we provide evidence that HA catabolism is disrupted in human intestinal microvascular endothelial cells isolated from patients with IBD. Furthermore, mice deficient in HYAL2 are more susceptible to an acute model of colitis, and this increased susceptibility is abrogated by transfusion of HYAL2-competent platelets. Finally, we show that platelets, via HYAL2-dependent degradation of endothelial HA, regulate the early stages of inflammation in colitis by limiting leukocyte extravasation.


Assuntos
Plaquetas/imunologia , Colite/imunologia , Hialuronoglucosaminidase/imunologia , Animais , Plaquetas/patologia , Células Cultivadas , Colite/patologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Proteínas Ligadas por GPI/imunologia , Humanos , Ácido Hialurônico/imunologia , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout
6.
Am J Hum Genet ; 104(2): 246-259, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661772

RESUMO

SOX4, together with SOX11 and SOX12, forms group C of SRY-related (SOX) transcription factors. They play key roles, often in redundancy, in multiple developmental pathways, including neurogenesis and skeletogenesis. De novo SOX11 heterozygous mutations have been shown to cause intellectual disability, growth deficiency, and dysmorphic features compatible with mild Coffin-Siris syndrome. Using trio-based exome sequencing, we here identify de novo SOX4 heterozygous missense variants in four children who share developmental delay, intellectual disability, and mild facial and digital morphological abnormalities. SOX4 is highly expressed in areas of active neurogenesis in human fetuses, and sox4 knockdown in Xenopus embryos diminishes brain and whole-body size. The SOX4 variants cluster in the highly conserved, SOX family-specific HMG domain, but each alters a different residue. In silico tools predict that each variant affects a distinct structural feature of this DNA-binding domain, and functional assays demonstrate that these SOX4 proteins carrying these variants are unable to bind DNA in vitro and transactivate SOX reporter genes in cultured cells. These variants are not found in the gnomAD database of individuals with presumably normal development, but 12 other SOX4 HMG-domain missense variants are recorded and all demonstrate partial to full activity in the reporter assay. Taken together, these findings point to specific SOX4 HMG-domain missense variants as the cause of a characteristic human neurodevelopmental disorder associated with mild facial and digital dysmorphism.


Assuntos
Anormalidades Múltiplas/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição SOXC/genética , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Síndrome de Coffin-Lowry/genética , Estudos de Coortes , Sequência Conservada , DNA/genética , DNA/metabolismo , Feminino , Domínios HMG-Box/genética , Heterozigoto , Humanos , Masculino , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOXC/química , Fatores de Transcrição SOXC/metabolismo , Ativação Transcricional , Xenopus/anatomia & histologia , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...