Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(28): 11867-11875, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38952206

RESUMO

Antibiotic resistance is a significant global concern, necessitating the development of either new antibiotics or advanced delivery methods. With this in mind, we report on the synthesis and characterisation of a new family of Metal-Organic Frameworks (MOFs), OnG6 MOFs, designed to act as multi-drug carriers for bacterial infection treatment. OnG6 is based on the pro-drug 4,4'-azodisalicylic acid (AZDH4), which in vivo produces two equivalents of para-aminosalicylic acid (ASA), a crucial drug for M. tuberculosis treatment. X-ray and computational studies revealed that OnG6 MOFs are mesoporous MOFs with etb topology and an [M2(AZD)] formula (M = Zn, OnG6-Zn; Mg, OnG6-Mg; Cu, OnG6-Cu; and Co, OnG6-Co), featuring 1-dimensional channel type pores of 25 Å diameter. OnG6 MOFs are the first reported MOFs bearing the ligand AZDH4, joining the family of mesoporous MOFs arranged in a honeycomb pattern. They absorb isoniazid (INH) and ciprofloxacin (CIPRO) with the former being a specific antibiotic for M. tuberculosis, and the latter being a broader-spectrum antibiotic. The stability of the MOFs and their capacity for antibiotic uptake depend on the nature of the metal ion, with OnG6-Mg demonstrating the highest drug absorption. The antimicrobial activity of these species was assessed against S. aureus and E. coli, revealing that the carriers containing CIPRO displayed optimal efficacy.


Assuntos
Portadores de Fármacos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Isoniazida/química , Isoniazida/farmacologia , Escherichia coli/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Modelos Moleculares
2.
Angew Chem Int Ed Engl ; : e202407840, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953248

RESUMO

Noble gas xenon (Xe) is an excellent anesthetic gas, but its rarity, high cost and constrained production prohibits wide use in medicine. Here, we have developed a closed-circuit anesthetic Xe recovery and reusage process with highly effective CO2-specific adsorbent CUPMOF-5 that is promising to solve the anesthetic Xe supply problem. CUPMOF-5 possesses spacious cage cavities interconnected in four directions by confinement throat apertures of ~3.4 Å, which makes it an ideal molecular sieving of CO2 from Xe, O2, N2 with the benchmark selectivity and high uptake capacity of CO2. In-situ single-crystal X-ray diffraction (SCXRD) and computational simulation solidly revealed the vital sieving role of the confined throat and the sorbent-sorbate induced-fit strengthening binding interaction to CO2. CUPMOF-5 can remove 5% CO2 even from actual moist exhaled anesthetic gases, and achieves the highest Xe recovery rate (99.8%) so far, as verified by breakthrough experiments. This endows CUPMOF-5 great potential for the on-line CO2 removal and Xe recovery from anesthetic closed-circuits.

3.
Angew Chem Int Ed Engl ; : e202404084, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863431

RESUMO

Stimuli-responsive physisorbents that undergo reversible structural transformations induced by external stimuli (e.g. light, guests, or heat) offer the promise of utility in gas storage and separation. Whereas reports on guest or light-responsive sorbents have increased in recent years, we are unaware of reports on sorbents that exhibit both light and guest-induced structural transformations. Herein, we report that the square lattice, sql, topology coordination network Zn(fba)(bis)Ù 2DMF (sql-5,6-Zn-a, 5 = trans-4,4'-bis(1-imidazolyl)stilbene = bis, 6 = 2,2-bis(4-carboxyphenyl)hexafluoropropane = H2fba) underwent single-crystal-to-single-crystal transformation (SCSC) upon activation, affording nonporous sql-5,6-Zn-b. Parallel alignment at 3.23 Å of olefinic moieties on adjacent bis ligands in sql-5,6-Zn-a enabled SCSC [2 + 2] photocycloaddition upon exposure to UV light (365 nm) or sunlight. sql-5,6-Zn-α thereby transformed to mot-5,6-Zn-α, which was subsequently activated to the narrow pore phase mot-5,6-Zn-b. sql-5,6-Zn-b and mot-5,6-Zn-b both exhibited S-shaped adsorption isotherms characteristic of guest-induced structural changes when exposed to CO2 at 195 K (type-F-IV and type F-I, respectively). Cycling experiments conducted upon sql-5,6-Zn-b reduced particle size after cycle 1 and induced transformation into a rare example of a shape memory coordination network, sql-5,6-Zn-g. Insight into this smorgasbord of SCSC phase changes was gained from in-situ PXRD, single crystal XRD and 1H nmr spectroscopy experiments.

4.
ACS Appl Mater Interfaces ; 16(26): 34402-34408, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902851

RESUMO

We report a crystal-engineering study conducted upon a platform of three mixed-linker square lattice (sql) coordination networks of general formula [Zn(Ria)(bphy)] [bphy = 1,2-bis(pyridin-4-yl)hydrazine, H2Ria = 5-position-substituted isophthalic acid, and R = -Br, -NO2, and -OH; compounds 1-3]. Analysis of single-crystal X-ray diffraction data of 1-2 and the simulated crystal structure of 3 revealed that 1-3 are isomorphous and sustained by bilayers of sql networks linked by hydrogen bonds. Although similar pore shapes and sizes exist in 1-3, distinct isotherm shapes (linear and S shape) and uptakes (2.4, 11.6, and 13.3 wt %, respectively) were observed. Ab initio calculations indicated that the distinct water sorption properties can be attributed to the R groups, which offer a range of hydrophilicity. Calculations indicated that the significantly lower experimental uptake in compound 1 can be attributed to a constricted channel. The calculated water-binding sites provide insights into how adsorbed water molecules bond to the pore walls, with the strongest interactions, water-hydroxyl hydrogen bonding, observed for 3. Overall, this study reveals how pore engineering can result in large variations in water sorption properties in an isomorphous family of rigid porous coordination networks.

5.
J Am Chem Soc ; 146(27): 18387-18395, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38904843

RESUMO

Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(µ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore ß phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, ß, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.

6.
ACS Mater Lett ; 6(6): 2197-2204, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38845756

RESUMO

Coordination networks (CNs) that undergo guest-induced structural transformations are of topical interest thanks to their potential utility in separations and storage applications. Herein, we report a double diamondoid (ddi) topology CN, [Ni2(bimpz)2(bdc)2(H2O)] n or X-ddi-2-Ni (H2bdc = 1,4-benzenedicarboxylic acid, bimpz = 3,6-bis(imidazol-1-yl)pyridazine), that undergoes structural transformations induced by C8 isomers, i.e., xylenes (o-xylene, OX; m-xylene, MX; p-xylene, PX) and ethylbenzene (EB). X-ddi-2-Ni was characterized by single-crystal to single-crystal transformations from a nonporous phase, X-ddi-2-Ni-ß, to isostructural C8-loaded phases, namely X-ddi-2-Ni-OX, X-ddi-2-Ni-MX, X-ddi-2-Ni-PX and X-ddi-2-Ni-EB. X-ddi-2-Ni accommodates two C8 isomers per Ni unit, resulting in relatively high uptake (ca. 50 wt %), but with low selectivity toward C8 isomers as found using nuclear magnetic resonance (NMR) and gas chromatography (GC). In addition, a narrow range of gate-opening pressures for each isomer was determined from dynamic vapor sorption, consistent with the nonadaptable nature of the C8-loaded phase determined crystallographically, also supported by modeling.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38666365

RESUMO

The stimulus-responsive behavior of coordination networks (CNs), which switch between closed (nonporous) and open (porous) phases, is of interest because of its potential utility in gas storage and separation. Herein, we report two polymorphs of a new square-lattice (sql) topology CN, X-sql-1-Cu, of formula [Cu(Imibz)2]n (HImibz = {[4-(1H-imidazol-1-yl)phenylimino]methyl}benzoic acid), isolated from the as-synthesized CN X-sql-1-Cu-(MeOH)2·2MeOH, which subsequently transformed to a narrow pore solvate, X-sql-1-Cu-A·MeOH, upon mild activation (drying in air or heating at 333 K under nitrogen). X-sql-1-Cu-A·MeOH contains MeOH in cavities, which was removed through exposure to vacuum for 2 h, yielding the nonporous (closed) phase X-sql-1-Cu-A. In contrast, a more dense polymorph, X-sql-1-Cu-B, was obtained by exposing X-sql-1-Cu-(MeOH)2·2MeOH directly to vacuum for 2 h. Gas sorption studies conducted on X-sql-1-Cu-A and X-sql-1-Cu-B revealed different switching behaviors to two open phases (X-sql-1-Cu·CO2 and X-sql-1-Cu·C2H2), with different gate-opening threshold pressures for CO2 at 195 K and C2H2 at 278 K. Coincident CO2 sorption and in situ powder X-ray diffraction studies at 195 K revealed that X-sql-1-Cu-A transformed to X-sql-1-Cu-B after the first sorption cycle and that the CO2-induced switching transformation was thereafter reversible. The results presented herein provide insights into the relationship between two polymorphs of a CN and the effect of polymorphism upon gas sorption properties. To the best of our knowledge, whereas sql networks such as X-sql-1-Cu are widely studied in terms of their structural and sorption properties, this study represents only the second example of an in-depth study of the sorption properties of polymorphic sql networks.

8.
Cryst Growth Des ; 24(6): 2573-2579, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525104

RESUMO

Porous coordination networks (PCNs) sustained by inorganic anions that serve as linker ligands can offer high selectivity toward specific gases or vapors in gas mixtures. Such inorganic anions are best exemplified by electron-rich fluorinated anions, e.g., SiF62-, TiF62-, and NbOF52-, although sulfate anions have recently been highlighted as inexpensive and earth-friendly alternatives. Herein, we report the use of a rare copper sulfate dimer molecular building block to generate two square lattice, sql, coordination networks which can be prepared via solvent layering or slurrying, CuSO4(1,4-bib)1.5, 1, (1,4-bib = 1,4-bisimidazole benzene) and CuSO4(1,4-bin)1.5, 2, (1,4-bin = 1,4-bisimidazole naphthalene). Variable-temperature SCXRD and PXRD experiments revealed that both sql networks underwent reversible structural transformations due to linker rotations or internetwork displacements. Gas sorption studies conducted upon the narrow-pore phase of CuSO4(1,4-bin)1.5, 2np, found a high calculated 1:99 selectivity for C2H2 over C2H4 (33.01) and CO2 (15.18), as well as strong breakthrough performance. Across-the-board, C3H4 selectivity vs C3H6, CO2, and C3H8 was also observed. Sulfate-based PCNs, although still understudied, appear increasingly likely to offer utility in gas and vapor separations.

9.
ACS Mater Lett ; 6(2): 666-673, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333599

RESUMO

Switching coordination networks (CNs) that reversibly transform between narrow or closed pore (cp) and large pore (lp) phases, though fewer than their rigid counterparts, offer opportunities for sorption-related applications. However, their structural transformations and switching mechanisms remain underexplored at the molecular level. In this study, we conducted a systematic investigation into a 2D switching CN, [Ni(bpy)2(NCS)2]n, sql-1-Ni-NCS (1 = bpy = 4,4'-bipyridine), using coincident gas sorption and in situ powder X-ray diffraction (PXRD) under low-temperature conditions. Gas adsorption measurements revealed that C2H4 (169 K) and C2H6 (185 K) exhibited single-step type F-IVs sorption isotherms with sorption uptakes of around 180-185 cm3 g-1, equivalent to four sorbate molecules per formula unit. Furthermore, parallel in situ PXRD experiments provided insight into sorbate-dependent phase switching during the sorption process. Specifically, CO2 sorption induced single-step phase switching (path I) solely between cp and lp phases consistent with the observed single-step type F-IVs sorption isotherm. By contrast, intermediate pore (ip) phases emerged during C2H4 and C2H6 desorption as well as C3H6 adsorption, although they remained undetectable in the sorption isotherms. To our knowledge, such a cp-lp-ip-cp transformation (path II) induced by C2H4/6 and accompanied by single-step type F-IVs sorption isotherms represents a novel type of phase transition mechanism in switching CNs. By virtue of Rietveld refinements and molecular simulations, we elucidated that the phase transformations are governed by cooperative local and global structural changes involving NCS- ligand reorientation, bpy ligand twist and rotation, cavity edge (Ni-bpy-Ni) deformation, and interlayer expansion and sliding.

10.
J Am Chem Soc ; 146(6): 4153-4161, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300827

RESUMO

Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.

11.
ACS Appl Mater Interfaces ; 16(4): 4803-4810, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258417

RESUMO

Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.

12.
ACS Mater Lett ; 6(1): 56-65, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178981

RESUMO

Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.

13.
Nat Mater ; 23(1): 39-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135814
14.
J Am Chem Soc ; 145(50): 27316-27324, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055597

RESUMO

High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.

15.
Chem Mater ; 35(23): 10001-10008, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107195

RESUMO

Separation of the C8 aromatic isomers, xylenes (PX, MX, and OX) and ethylbenzene (EB), is important to the petrochemical industry. Whereas physisorptive separation is an energy-efficient alternative to current processes, such as distillation, physisorbents do not generally exhibit strong C8 selectivity. Herein, we report the mixed-linker square lattice (sql) coordination network [Zn2(sba)2(bis)]n·mDMF (sql-4,5-Zn, H2sba or 4 = 4,4'-sulfonyldibenzoic acid, bis or 5 = trans-4,4'-bis(1-imidazolyl)stilbene) and its C8 sorption properties. sql-4,5-Zn was found to exhibit high uptake capacity for liquid C8 aromatics (∼20.2 wt %), and to the best of our knowledge, it is the first sorbent to exhibit selectivity for PX, EB, and MX over OX for binary, ternary, and quaternary mixtures from gas chromatography. Single-crystal structures of narrow-pore, intermediate-pore, and large-pore phases provided insight into the phase transformations, which were enabled by flexibility of the linker ligands and changes in the square grid geometry and interlayer distances. This work adds to the library of two-dimensional coordination networks that exhibit high uptake, thanks to clay-like expansion, and strong selectivity, thanks to shape-selective binding sites, for C8 isomers.

16.
Cryst Growth Des ; 23(11): 8139-8146, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937187

RESUMO

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.

17.
J Mater Chem A Mater ; 11(30): 16019-16026, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013758

RESUMO

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.

18.
Chem Commun (Camb) ; 59(93): 13867-13870, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930365

RESUMO

Herein, we introduce a new square lattice topology coordination network, sql-(1,3-bib)(ndc)-Ni, with three types of connection and detail its gas and vapour induced phase transformations. Exposure to humidity resulted in an S-shaped isotherm profile, suggesting potential utility of such materials as desiccants.

19.
ACS Mater Lett ; 5(9): 2567-2575, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680544

RESUMO

Gas or vapor-induced phase transformations in flexible coordination networks (CNs) offer the potential to exceed the performance of their rigid counterparts for separation and storage applications. However, whereas ligand modification has been used to alter the properties of such stimulus-responsive materials, they remain understudied compared with their rigid counterparts. Here, we report that a family of Zn2+ CNs with square lattice (sql) topology, differing only through the substituents attached to a linker, exhibit variable flexibility. Structural and CO2 sorption studies on the sql networks, [Zn(5-Ria)(bphy)]n, ia = isophthalic acid, bphy = 1,2-bis(pyridin-4-yl)hydrazine, R = -CH3, -OCH3, -C(CH3)3, -N=N-Ph, and -N=N-Ph(CH3)2, 2-6, respectively, revealed that the substituent moieties influenced both structural and gas sorption properties. Whereas 2-3 exhibited rigidity, 4, 5, and 6 exhibited reversible transformation from small pore to large pore phases. Overall, the insight into the profound effect of pendent moieties of linkers upon phase transformations in this family of layered CNs should be transferable to other CN classes.

20.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37770385

RESUMO

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...