Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 84: 101950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697291

RESUMO

OBJECTIVE: The number of individuals affected by metabolic dysfunction associated fatty liver disease [1] is on the rise, yet hormonal contributors to the condition remain incompletely described and only a single FDA-approved treatment is available. Some studies suggest that the hormones ghrelin and LEAP2, which act as agonist and antagonist/inverse agonist, respectively, for the G protein coupled receptor GHSR, may influence the development of MAFLD. For instance, ghrelin increases hepatic fat whereas synthetic GHSR antagonists do the opposite. Also, hepatic steatosis is less prominent in standard chow-fed ghrelin-KO mice but more prominent in 42% high-fat diet-fed female LEAP2-KO mice. METHODS: Here, we sought to determine the therapeutic potential of a long-acting LEAP2 analog (LA-LEAP2) to treat MAFLD in mice. LEAP2-KO and wild-type littermate mice were fed a Gubra-Amylin-NASH (GAN) diet for 10 or 40 wks, with some randomized to an additional 28 or 10 days of GAN diet, respectively, while treated with LA-LEAP2 vs Vehicle. Various metabolic parameters were followed and biochemical and histological assessments of MAFLD were made. RESULTS: Among the most notable metabolic effects, daily LA-LEAP2 administration to both LEAP2-KO and wild-type littermates during the final 4 wks of a 14 wk-long GAN diet challenge markedly reduced liver weight, hepatic triglycerides, plasma ALT, hepatic microvesicular steatosis, hepatic lobular inflammation, NASH activity scores, and prevalence of higher-grade fibrosis. These changes were accompanied by prominent reductions in body weight, without effects on food intake, and reduced plasma total cholesterol. Daily LA-LEAP2 administration during the final 10 d of a 41.5 wk-long GAN diet challenge also reduced body weight, plasma ALT, and plasma total cholesterol in LEAP2-KO and wild-type littermates and prevalence of higher grade fibrosis in LEAP2-KO mice. CONCLUSIONS: Administration of LA-LEAP2 to mice fed a MAFLD-prone diet markedly improves several facets of MAFLD, including hepatic steatosis, hepatic lobular inflammation, higher-grade hepatic fibrosis, and transaminitis. These changes are accompanied by prominent reductions in body weight and lowered plasma total cholesterol. Taken together, these data suggest that LEAP2 analogs such as LA-LEAP2 hold promise for the treatment of MAFLD and obesity.


Assuntos
Dieta Hiperlipídica , Inflamação , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Redução de Peso , Animais , Camundongos , Inflamação/metabolismo , Redução de Peso/efeitos dos fármacos , Feminino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Masculino , Grelina/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 821091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299958

RESUMO

Toxic misfolding of proinsulin variants in ß-cells defines a monogenic diabetes syndrome, designated mutant INS-gene induced diabetes of the young (MIDY). In our first study (previous article in this issue), we described a one-disulfide peptide model of a proinsulin folding intermediate and its use to study such variants. The mutations (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser) probe residues conserved among vertebrate insulins. In this companion study, we describe 1H and 1H-13C NMR studies of the peptides; key NMR resonance assignments were verified by synthetic 13C-labeling. Parent spectra retain nativelike features in the neighborhood of the single disulfide bridge (cystine B19-A20), including secondary NMR chemical shifts and nonlocal nuclear Overhauser effects. This partial fold engages wild-type side chains LeuB15, LeuA16 and PheB24 at the nexus of nativelike α-helices α1 and α3 (as defined in native proinsulin) and flanking ß-strand (residues B24-B26). The variant peptides exhibit successive structural perturbations in order: parent (most organized) > SerB24 >> ProA16 > ProB15 (least organized). The same order pertains to (a) overall α-helix content as probed by circular dichroism, (b) synthetic yields of corresponding three-disulfide insulin analogs, and (c) ER stress induced in cell culture by corresponding mutant proinsulins. These findings suggest that this and related peptide models will provide a general platform for classification of MIDY mutations based on molecular mechanisms by which nascent disulfide pairing is impaired. We propose that the syndrome's variable phenotypic spectrum-onsets ranging from the neonatal period to later in childhood or adolescence-reflects structural features of respective folding intermediates.


Assuntos
Diabetes Mellitus , Proinsulina , Adolescente , Diabetes Mellitus/genética , Dissulfetos/química , Humanos , Recém-Nascido , Insulina/química , Proinsulina/química , Proinsulina/genética , Dobramento de Proteína
3.
Front Endocrinol (Lausanne) ; 13: 821069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299972

RESUMO

The mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated mutant INS-gene induced diabetes of the young (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of ß-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser). The studies exploited a 49-residue single-chain synthetic precursor (designated DesDi), previously shown to optimize in vitro efficiency of disulfide pairing. Parent and variant peptides contain a single disulfide bridge (cystine B19-A20) to provide a model of proinsulin's first oxidative folding intermediate. The peptides were characterized by circular dichroism and redox stability in relation to effects of the mutations on (a) in vitro foldability of the corresponding insulin analogs and (b) ER stress induced in cell culture on expression of the corresponding variant proinsulins. Striking correlations were observed between peptide biophysical properties, degree of ER stress and age of diabetes onset (neonatal or adolescent). Our findings suggest that age of onset reflects the extent to which nascent structure is destabilized in proinsulin's putative folding nucleus. We envisage that such peptide models will enable high-resolution structural studies of key folding determinants and in turn permit molecular dissection of phenotype-genotype relationships in this monogenic diabetes syndrome. Our companion study (next article in this issue) employs two-dimensional heteronuclear NMR spectroscopy to define site-specific perturbations in the variant peptides.


Assuntos
Diabetes Mellitus , Proinsulina , Adolescente , Diabetes Mellitus/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Insulina/metabolismo , Peptídeos , Proinsulina/química , Proinsulina/genética , Proinsulina/metabolismo , Dobramento de Proteína
4.
ACS Chem Biol ; 14(8): 1829-1835, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31343157

RESUMO

Insulin is the principal hormone involved in the regulation of metabolism and has served a seminal role in the treatment of diabetes. Building upon advances in insulin synthetic methodology, we have developed a straightforward route to novel insulins containing a fourth disulfide bond in a [3 + 1] fashion establishing the first disulfide scan of the hormone. All the targeted analogs accommodated the constraint to demonstrate an unexpected conformational flexibility of native insulin. The bioactivity was established for the constrained (4-DS) and unconstrained (3-DS) analogs by in vitro methods, and extended to in vivo study for select peptides. We also identified residue B10 as a preferred anchor to introduce a tether that would regulate insulin bioactivity. We believe that the described [3 + 1] methodology might constitute the preferred approach for performing similar disulfide scanning in peptides that contain multiple disulfides.


Assuntos
Dissulfetos/química , Insulina/análogos & derivados , Sequência de Aminoácidos , Dissulfetos/síntese química , Insulina/síntese química , Conformação Proteica , Engenharia de Proteínas/métodos
5.
Peptides ; 120: 170116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348991

RESUMO

Insulin-like peptide 5 (INSL5) is a member of the insulin-like family of peptides. It has been reported to be orexigenic in rodent models of obesity with impaired glucose metabolism. We attempted to confirm this property as a first step in establishing the ability of INSL5 to successfully integrate with other agents more proven in their ability to reverse obesity and improve metabolism. INSL5 was chemically synthesized by two alternative methods to a native form and one that was site-specifically conjugated to a 20 KDa polyethylene glycol (PEG) polymer. The pharmacology of each peptide was assessed by high-dose chronic administration in normal and obese mice. INSL5 failed to produce pharmacologically relevant effects on food intake, body weight or glucose control indicative of a negligible role of the peptide in the control of feeding and glucose metabolism.


Assuntos
Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucose/metabolismo , Obesidade/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/patologia , Hormônios Peptídicos/síntese química , Hormônios Peptídicos/química
6.
Org Lett ; 20(12): 3695-3699, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29874090

RESUMO

A simplified route to synthesis of INSL5 is reported, where the elimination of intermediate purification steps and nonconventional disulfide pairing results in final yields that are an order of magnitude higher than in previously reported stepwise syntheses. The intramolecular disulfide of A-chain was produced by a thiol displacement of StBu-protected cysteine, and was followed by an A-B chain disulfide formation in dimethylsulfoxide (DMSO). The final disulfide was formed by deprotection of StBu-cysteines in hydrofluoric acid (HF) at room temperature, which is a historical approach infrequently employed today, followed by oxidation using 2,2-dithiobis(5-nitropyridine) (DTNP) in acidic aqueous buffer. Throughout the synthesis, an isoacyl surrogate to a midsequence native amide bond was utilized to enhance solubility of the intermediate compounds.


Assuntos
Insulina/síntese química , Proteínas/síntese química , Sequência de Aminoácidos , Dissulfetos , Humanos , Estrutura Molecular , Peptídeos
7.
ChemMedChem ; 13(8): 852-859, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29466617

RESUMO

We report the synthesis and in vitro bioactivity assessment for an insulin-like peptide 5 (INSL5) analogue that was recently discovered as a genetic mutation in an Amish population. The mutation was associated with improved metabolic status, and receptor-based antagonism was proposed as a potential mechanism for the altered phenotype. We determined the specific peptide analogue to be fully potent and of maximal efficacy at the human relaxin family peptide receptor 4 (RXFP4), suggesting an alternative basis for the observed effect. In preparation of this synthetically challenging hormone, we have introduced several improvements such as implementation of isoacyl chemistry for high-efficiency preparation of INSL5 B-chain and selective intramolecular A6-11 disulfide formation as a first step in sequential disulfide assembly.


Assuntos
Insulina/genética , Insulina/metabolismo , Mutação Puntual , Proteínas/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Ciclização , Humanos , Insulina/síntese química , Insulina/química , Iodo/metabolismo , Oxirredução , Proteínas/síntese química , Proteínas/química
8.
J Pept Sci ; 23(6): 455-465, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28466571

RESUMO

This report presents an entirely chemical, general strategy for the synthesis of relaxin-2 and insulin-like peptide 5. Historically, these two peptides have represented two of the more synthetically challenging members of the insulin superfamily. The key synthetic steps involve two sequential oxime ligations to covalently link the individual A-chain and B-chain, followed by disulfide bond formation under aqueous, redox conditions. This is followed by two chemical reactions that employ diketopiperazine cyclization-mediated cleavage and ester hydrolysis to liberate the connecting peptide and the heterodimeric product. This approach avoids the conventional iodine-mediated disulfide bond formation and enzyme-assisted proteolysis to generate biologically active two-chain peptides. This novel synthetic strategy is ideally suited for peptides such as relaxin and insulin-like peptide 5 as they possess methionine and tryptophan that are labile under strong oxidative conditions. Additionally, these peptides possess multiple arginine and lysine residues that preclude the use of trypsin-like enzymes to obtain biologically active hormones. This synthetic methodology is conceivably applicable to other two-chain peptides that contain multiple disulfide bonds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Insulina/síntese química , Proteínas/síntese química , Relaxina/síntese química , Humanos , Insulina/química , Conformação Molecular , Proteínas/química , Relaxina/química
9.
Chemistry ; 22(28): 9777-83, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27259101

RESUMO

Human insulin-like peptide-6 (INSL-6) belongs to the insulin superfamily and shares the distinctive disulfide bond configuration of human insulin. In this report we present the first chemical synthesis of INSL-6 utilizing fluorenylmethyloxycarbonyl-based (Fmoc) solid-phase peptide chemistry and regioselective disulfide bond construction protocols. Due to the presence of an oxidation-sensitive tryptophan residue, two new orthogonal synthetic methodologies were developed. The first method involved the identification of an additive to suppress the oxidation of tryptophan during iodine-mediated S-acetamidomethyl (Acm) deprotection and the second utilized iodine-free, sulfoxide-directed disulfide bond formation. The methodologies presented here offer an efficient synthetic route to INSL-6 and will further improve synthetic access to other multiple-disulfide-containing peptides with oxidation-sensitive residues.


Assuntos
Dissulfetos/química , Insulina/química , Insulina/síntese química , Peptídeos/química , Peptídeos/síntese química , Triptofano/química , Humanos , Oxirredução , Triptofano/metabolismo
10.
Nat Rev Drug Discov ; 15(6): 425-39, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988411

RESUMO

Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Glicemia/análise , Humanos
11.
J Pept Sci ; 22(5): 260-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910514

RESUMO

The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Insulina/química , Peptídeos/síntese química , Relaxina/química , Somatomedinas/química , Animais , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Dobramento de Proteína
12.
ACS Chem Biol ; 9(3): 683-91, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24328449

RESUMO

Insulin remains a challenging synthetic target due in large part to its two-chain, disulfide-constrained structure. Biomimetic single chain precursors inspired by proinsulin that utilize short peptides to join the A and B chains can dramatically enhance folding efficiency. Systematic chemical analysis of insulin precursors using an optimized synthetic protocol identified a 49 amino acid peptide named DesDi, which folds with high efficiency by virtue of an optimized structure and could be proteolytically converted to bioactive two-chain insulin. In subsequent applications, we observed that the folding of the DesDi precursor was highly tolerant to amino acid substitution at various insulin residues. The versatility of DesDi as a synthetic insulin precursor was demonstrated through the preparation of several alanine mutants (A10, A16, A18, B12, B15), as well as ValA16, an analog that was unattainable in prior reports. In vitro bioanalysis highlighted the importance of the native, hydrophobic residues at A16 and B15 as part of the core structure of the hormone and revealed the significance of the A18 residue to receptor selectivity. We propose that the DesDi precursor is a versatile synthetic intermediate for the preparation of diverse insulin analogs. It should enable a more comprehensive analysis of function to insulin structure than might not be otherwise possible through conventional approaches.


Assuntos
Insulina/análogos & derivados , Insulina/síntese química , Precursores de Proteínas/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Células HEK293 , Humanos , Insulina/química , Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Proinsulina/química , Dobramento de Proteína , Precursores de Proteínas/genética , Redobramento de Proteína , Transfecção
13.
Chem Commun (Camb) ; 47(39): 10927-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21912780

RESUMO

A synthesis of multifunctional dirhodium metallopeptide ligands for MDM2 is presented. An orthogonal protection scheme of palladium-catalyzed de-allylation on a metallopeptide substrate allows specific dirhodium incorporation in a complex peptide. Sequence effects on MDM2 binding are discussed.


Assuntos
Sondas Moleculares/síntese química , Sondas Moleculares/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ródio/química , Sequência de Aminoácidos , Ligantes , Modelos Moleculares , Sondas Moleculares/química , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química
14.
Chemistry ; 16(22): 6651-9, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20411535

RESUMO

The use of carboxylate side chains to induce peptide helicity upon binding to dirhodium centers is examined through experimental and computational approaches. Dirhodium binding efficiently stabilizes alpha helicity or induces alpha helicity in otherwise unstructured peptides for peptides that contain carboxylate side chains with i, i+4 spacing. Helix induction is furthermore possible for sequences with i, i+3 carboxylate spacing, though in this case the length of the side chains is crucial: ligating to longer glutamate side chains is strongly helix inducing, whereas ligating the shorter aspartate side chains destabilizes the helical structure. Further studies demonstrate that a dirhodium metallopeptide complex persists for hours in cellular media and exhibits low toxicity toward mammalian cells, enabling exploitation of these metallopeptides for biological applications.


Assuntos
Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/fisiologia , Rim/fisiologia , Metaloproteínas/química , Peptídeos/química , Ródio/química , Sequência de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Humanos , Rim/química , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Metaloproteínas/metabolismo , Modelos Químicos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...