Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(7): 2700-2712, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585378

RESUMO

This study presents a comprehensive comparison of the batch cooling crystallization performance of aqueous solutions containing sugars and sugar alcohols, namely, erythritol, glucose, xylitol, and xylose. Erythritol and xylitol are commonly used alternative sweeteners to replace sucrose. They can be obtained by fermentation-based bioprocesses, where glucose and xylose are typical raw materials. These model compounds were selected based on their differing rheological nature: saturated erythritol solution has a viscosity lower than 3 mPa·s, whereas xylitol has the highest viscosity: greater than 90 mPa·s in the studied temperature range. Viscosities and densities of saturated solutions as well as apparent viscosities of crystal-mother liquor suspensions were measured. The purpose was to evaluate their crystallization behavior within a specific temperature range from 40 to 20 °C and batch time of 2 h, with the aim of understanding the influence of viscosity on the process more comprehensively. The comparison within the selected compound systems was carried out in terms of the physical properties of the mother liquor and the crystalline product. In addition to empirical laboratory-scale (0.1 and 1 L) studies, larger-scale simulations (1 and 100 m3) were performed with the experimental data obtained on average particle size, density, and viscosity for mother liquor and crystal-mother liquor suspensions. Mixing characteristics, such as the dissipation energy, mass transfer coefficient, energy of collisions, and micromixing time, were calculated with VisiMix software when using a single or dual impeller mixer. Furthermore, the scaling up of erythritol, xylitol, glucose, and xylose batch cooling crystallization from 40 to 20 °C based on the scaling-up rule of constant tip speed and energy of dissipation was done with VisiMix to obtain overall data on mixing conditions with crystallizers of 1 and 100 m3 in volume. Furthermore, ANSYS CFD software was used to determine the strain rates close to the impeller tip and velocity profiles on various crystallizer scales.

2.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399993

RESUMO

Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.


Assuntos
Benzofuranos , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Ligantes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/metabolismo , Simulação de Dinâmica Molecular , Antivirais/uso terapêutico , Tiofenos/farmacologia , Peptídeo Hidrolases/metabolismo
3.
Antibodies (Basel) ; 12(4)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38131804

RESUMO

In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus. Perhaps this will contribute to understanding some of the processes that precede the emergence of a pandemic virus. We assessed the specificity and virus-neutralizing capacity of antibodies reacting with the nucleocapsid and spike proteins of SARS-CoV-2 in a set of serum samples collected in October and November 2019, before the first COVID-19 cases were documented in this region. Blood serum samples from 799 residents of several regions of Siberia, Russia, (the Altai Territory, Irkutsk, Kemerovo and Novosibirsk regions, the Republic of Altai, Buryatia, and Khakassia) were analyzed. Sera of non-infected donors were collected within a study of seasonal influenza in the Russian Federation. The sample collection sites were located near the flyways and breeding grounds of wild waterfowl. The performance of enzyme-linked immunosorbent assay (ELISA) for the collected sera included the usage of recombinant SARS-CoV-2 protein antigens: full-length nucleocapsid protein (CoVN), receptor binding domain (RBD) of S-protein and infection fragment of the S protein (S5-6). There were 183 (22.9%) sera reactive to the S5-6, 270 (33.8%) sera corresponding to the full-length N protein and 128 (16.2%) sera simultaneously reactive to both these proteins. Only 5 out of 799 sera had IgG antibodies reactive to the RBD. None of the sera exhibited neutralizing activity against the nCoV/Victoria/1/2020 SARS-CoV-2 strain in Vero E6 cell culture. The data obtained in this study suggest that some of the population of the analyzed regions of Russia had cross-reactive humoral immunity against SARS-CoV-2 before the COVID-19 pandemic started. Moreover, among individuals from relatively isolated regions, there were significantly fewer reliably cross-reactive sera. The possible significance of these data and impact of cross-immunity to SARS-CoV-2 on the prevalence and mortality of COVID-19 needs further assessment.

4.
Heliyon ; 9(6): e17423, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408933

RESUMO

In this study, we propose a full gamma-valerolactone (GVL) organosolv biorefinery concept including the utilization of all pulping streams, solvent recovery, and preliminary material and energy balances. GVL is a renewable and non-toxic solvent that fractionates woody biomass. The silver birch chips were pulped (45-65 wt% GVL, 150 °C, 2 h) under a series of acid-catalyzed conditions (5-12 kg H2SO4/t), and the fully bleached pulp was spun into fibers by the IONCELL® process and knitted into the fabric. The dissolved lignin was precipitated by water from spent liquor (1:1) and processed into polyhydroxyurethane. Most of the dissolved hemicelluloses were in the form of xylose, therefore, the crystallization efficiency of xylose from spent liquor in the presence of residual GVL was studied. The GVL recovery rate in the lab column was 66%, however by increasing the number of equilibrium stages, 99% recovery could be achieved.

5.
Vaccines (Basel) ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37112720

RESUMO

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.

6.
Cryst Growth Des ; 23(3): 1813-1820, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36879775

RESUMO

Four different techniques for xylitol crystallization, namely cooling, evaporative, antisolvent, and combined antisolvent and cooling crystallization, were investigated regarding their influence on the product crystal properties. Various batch times and mixing intensities were studied, and the antisolvent used was ethanol. Real-time monitoring of the count rates of various chord length fractions and distributions using focused beam reflectance measurement was conducted. Several solid characterization methods were used for studying the crystal size and shape, such as scanning electron microscopy and laser diffraction-based crystal size distribution analysis. Crystals ranging in size from 200 to 700 µm were obtained based on the analysis results by laser diffraction. The dynamic viscosity of saturated and undersaturated xylitol solution samples was measured; the density and refraction index were measured to determine the xylitol concentration in the mother liquor. Saturated xylitol solutions were found to have relatively high viscosities up to 129 mPa s in the studied temperature range. Viscosity can have a key role in crystallization kinetics, especially in cooling and evaporative crystallization. Mixing speed had a great influence, mainly on the secondary nucleation mechanism. The addition of ethanol decreased the viscosity, resulting in more uniform crystal shape and better filterability.

7.
Pharmaceutics ; 14(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365078

RESUMO

Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.

8.
Viruses ; 14(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36298709

RESUMO

In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Peptídeo Hidrolases , Glicoproteínas de Membrana
9.
Viruses ; 14(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746766

RESUMO

In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S. For the compounds that showed activity on the pseudoviral system, a study using three strains of the infectious SARS-CoV-2 virus was carried out. As a result, two leader compounds were found that showed activity on the Wuhan, Delta, and Omicron strains. Based on the biological results, we searched for the potential binding site of the leader compounds using molecular dynamics and molecular docking methods. We suggested that the compounds can bind in conserved regions of the central helices and/or heptad repeats of glycoprotein S of SARS-CoV-2 viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Canfanos , Ésteres , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Viruses ; 14(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632800

RESUMO

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Galinhas , Cricetinae , Modelos Animais de Doenças , Furões , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia
11.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216301

RESUMO

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Assuntos
Vacinas contra COVID-19/química , Vacinas contra COVID-19/farmacologia , Imunidade Humoral/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Animais , Sítios de Ligação , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Dextranos/química , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermidina/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Células Vero
12.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062757

RESUMO

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

13.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011529

RESUMO

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 µM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ácido Glicirrízico/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral , Animais , Antivirais/síntese química , COVID-19/virologia , Chlorocebus aethiops , Infecções por HIV/virologia , Células HeLa , Humanos , Técnicas In Vitro , Células Vero
14.
J Pharm Biomed Anal ; 199: 114062, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33862506

RESUMO

The stability of the new antifiloviral agent AS-358, which is a derivative of borneol and 3-(piperidin-1-yl)propanoic acid, was studied in the blood and blood plasma of rats in vitro. It was found that both in the blood and in the plasma stabilized by EDTA or heparin, the compound is rapidly hydrolyzed at the ester bond. When sodium fluoride was added to the whole blood, the decomposition of the compound was significantly slowed down, which made it possible to develop and validate a method for the quantitative determination of the agent in this matrix. The method was validated in terms of selectivity, calibration dependence, LLOQ, accuracy and precision, stability in an autosampler, recovery, and carry-over. A 8:2 v/v mixture of methanol containing 2-adamantylamine hydrochloride (internal standard, IS) with 0.2 M aqueous zinc sulfate was used for blood sample treatment and protein precipitation. Analysis was performed by HPLC-MS/MS using reversed phase chromatography. MS/MS detection was performed on a triple quadrupole mass spectrometer 6500 QTRAP (SCIEX) in multiple reaction monitoring (MRM) mode. The transitions 294.5→158.2/98.1 and 152.2→107.2/93.1 were monitored for AS-358 and the IS, respectively. The calibration curve was built in the concentration range of 1-500 ng/mL, the intra-day and inter-day accuracy and precision, carry-over and recovery were within the acceptable limits. The developed method was used for a preliminary study of the pharmacokinetics of the agent AS-358 after its oral administration to rats. It was shown that when the substance was administered at a dose of 200 mg/kg, its concentration in the blood of animals reached 550 ng/mL after 1 h, despite its instability in blood.


Assuntos
Propionatos , Espectrometria de Massas em Tandem , Animais , Canfanos , Cromatografia Líquida de Alta Pressão , Ratos , Reprodutibilidade dos Testes
15.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924393

RESUMO

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Assuntos
Antivirais/síntese química , Monoterpenos Bicíclicos/química , Antivirais/química , Ebolavirus/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Orthomyxoviridae/efeitos dos fármacos , Estrutura Secundária de Proteína , Pirrolidinas/química
16.
Bioorg Med Chem Lett ; 40: 127926, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705902

RESUMO

This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system. It was found that the hit compound possesses significant activity (IC50 = 7.6 ± 2 µM) along with low toxicity (CC50 > 1000 µM). Using molecular docking procedures, the binding with Hantavirus nucleoprotein was evaluated and the correlation between the structure of the synthesised compounds and the antiviral activity was established.


Assuntos
Antivirais/farmacologia , Canfanos/farmacologia , Vírus Hantaan/efeitos dos fármacos , Hidrazonas/farmacologia , Isoindóis/farmacologia , Norbornanos/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Canfanos/síntese química , Canfanos/metabolismo , Proteínas do Capsídeo/metabolismo , Cães , Desenho de Fármacos , Células HEK293 , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Isoindóis/síntese química , Isoindóis/metabolismo , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norbornanos/síntese química , Norbornanos/metabolismo , Ligação Proteica , Proteínas do Core Viral/metabolismo
17.
Vaccines (Basel) ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494530

RESUMO

One of the key stages in the development of mRNA vaccines is their delivery. Along with liposome, other materials are being developed for mRNA delivery that can ensure both the safety and effectiveness of the vaccine, and also facilitate its storage and transportation. In this study, we investigated the polyglucin:spermidine conjugate as a carrier of an mRNA-RBD vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The conditions for the self-assembling of mRNA-PGS complexes were optimized, including the selection of the mRNA:PGS charge ratios. Using dynamic and electrophoretic light scattering it was shown that the most monodisperse suspension of nanoparticles was formed at the mRNA:PGS charge ratio equal to 1:5. The average hydrodynamic particles diameter was determined, and it was confirmed by electron microscopy. The evaluation of the zeta potential of the investigated complexes showed that the particles surface charge was close to the zero point. This may indicate that the positively charged PGS conjugate has completely packed the negatively charged mRNA molecules. It has been shown that the packaging of mRNA-RBD into the PGS envelope leads to increased production of specific antibodies with virus-neutralizing activity in immunized BALB/c mice. Our results showed that the proposed polycationic polyglucin:spermidine conjugate can be considered a promising and safe means to the delivery of mRNA vaccines, in particular mRNA vaccines against SARS-CoV-2.

18.
Eur J Med Chem ; 207: 112726, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905862

RESUMO

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC50 values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus. Compound 3b (As-358) exhibited the good antiviral potency (IC50 = 3.7 µM, SI = 118) against Marburg virus, while the hydrochloride salt of this compound 3b·HCl had a strong inhibitory effect against Ebola virus (IC50 = 9.1 µM, SI = 31) and good in vivo safety (LD50 > 1000 mg/kg). The results of molecular docking and in vitro mutagenesis analyses suggest that the synthesized compounds bind to the active binding site of EBOV glycoprotein similar to the known inhibitor toremifene.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/farmacologia , Animais , Antivirais/toxicidade , Ebolavirus/fisiologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Monoterpenos/toxicidade , Internalização do Vírus
19.
Arch Virol ; 155(7): 1145-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20432047

RESUMO

Three viruses included in the study were isolated from dead birds (A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006), whereas the virus A/common gull/Chany/P/2006 was isolated from an apparently healthy gull during outbreaks of highly pathogenic avian influenza in Russia in 2006. The intravenous pathogenicity index (IVPI) of viruses A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006 ranged from 2.7 to 3.0, while the virus A/common gull/Chany/P/2006 had a markedly lower IVPI of 1.7. The virus A/common gull/Chany/P/2006 had a unique pattern of six amino acid substitutions in the regions of viral proteins crucial for virulence of H5N1 viruses. We hypothesize that these substitutions may affect the pathogenicity of A/common gull/Chany/P/2006.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Aves , Galinhas , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Sibéria/epidemiologia , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...