Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 977372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249803

RESUMO

Each year, infections caused around the 25% of neonatal deaths. Early empirical treatments help to reduce this mortality, although optimized dosing regimens are still lacking. The aims were to develop and validate a gentamicin physiologically-based pharmacokinetic (PBPK) model and then potentially explore dosing regimens in neonates using pharmacokinetic and pharmacodynamic criteria. The PBPK model developed consisted of 2 flow-limited tissues: kidney and other tissues. It has been implemented on a new tool called PhysPK, which allows structure reusability and evolution as predictive engine in Model-Informed Precision Dosing (MIPD). Retrospective pharmacokinetic information based on serum levels data from 47 neonates with gestational age between 32 and 39 weeks and younger than one-week postnatal age were used for model validation. The minimal PBPK model developed adequately described the gentamicin serum concentration-time profile with an average fold error nearly 1. Extended interval gentamicin dosing regimens (6 mg/kg q36h and 6 mg/kg q48h for term and preterm neonates, respectively) showed efficacy higher than 99% with toxicity lower than 10% through Monte Carlo simulation evaluations. The gentamicin minimal PBPK model developed in PhysPK from literature information, and validated in preterm and term neonates, presents adequate predictive performance and could be useful for MIPD strategies in neonates.

2.
Pharmaceutics ; 14(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35214138

RESUMO

Computational modelling has gained attention for evaluating nanoparticle-based drug delivery systems. Physiologically based pharmacokinetic (PBPK) modelling provides a mechanistic approach for evaluating drug biodistribution. The aim of this work is to develop a specific PBPK model to simulate stavudine biodistribution after the administration of a 40 nm gold nanoparticle-based drug delivery system in rats. The model parameters used have been obtained from literature, in vitro and in vivo studies, and computer optimization. Based on these, the PBPK model was built, and the compartments included were considered as permeability rate-limited tissues. In comparison with stavudine solution, a higher biodistribution of stavudine into HIV reservoirs and the modification of pharmacokinetic parameters such as the mean residence time (MRT) have been observed. These changes are particularly noteworthy in the liver, which presents a higher partition coefficient (from 0.27 to 0.55) and higher MRT (from 1.28 to 5.67 h). Simulated stavudine concentrations successfully describe these changes in the in vivo study results. The average fold error of predicted concentrations after the administration of stavudine-gold nanoparticles was within the 0.5-2-fold error in all of the tissues. Thus, this PBPK model approach may help with the pre-clinical extrapolation to other administration routes or the species of stavudine gold nanoparticles.

3.
Macromol Biosci ; 17(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27748547

RESUMO

The human immunodeficiency virus (HIV) continues to be a global pandemic and there is an urgent need for innovative treatment. Immune cells represent a major target of virus infection, but are also therapeutic targets. Currently, no antiretroviral therapy targets macrophages, which function as portal of entry and as major long-term deposit of HIV. It has been shown before that human macrophages efficiently internalize gold nanoparticles, a fact which might be used to target them with drug-nanoparticle conjugates. Here, the authors use gold nanocarriers to facilitate delivery of stavudine, a widely used antiretroviral drug, to primary human macrophages. Using an ease-of-use coupling method, a striking potentiation of stavudine intake by macrophages using gold nanocarriers is shown. Further, the carriers induce a specific subtype of proinflammatory activation indicative for antiviral activity of macrophages, which suggests promising novel treatment options for HIV.


Assuntos
Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Estavudina/administração & dosagem , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Nanopartículas Metálicas/química , Estavudina/química
4.
J Control Release ; 224: 86-102, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26772877

RESUMO

For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.


Assuntos
Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/uso terapêutico , Infecções/tratamento farmacológico , Nanopartículas , Animais , Anti-Infecciosos/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos
5.
Int J Antimicrob Agents ; 42(2): 155-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23756322

RESUMO

The objectives of this study were to conduct a comparative pharmacokinetic/pharmacodynamic (PK/PD) evaluation using Monte Carlo simulation of conventional versus high-dose extended-interval dosage (HDED) regimens of amikacin (AMK) in intensive care unit (ICU) patients for an Acinetobacter baumannii infection model. The simulation was performed in five populations (a control population and four subpopulations of ICU patients). Using a specific AMK PK/PD model and Monte Carlo simulation, the following were generated: simulated AMK steady-state plasma level curves; PK/PD efficacy indexes [time during which the serum drug concentration remains above the minimum inhibitory concentration (MIC) for a dosing period (%T>MIC) and ratio of peak serum concentration to MIC (Cmax/MIC)]; evolution of bacterial growth curves; and adaptive resistance to treatment. A higher probability of bacterial resistance was observed with the HDED regimen compared with the conventional dosage regimen. A statistically significant increase in Cmax/MIC and a statistically significant reduction in %T>MIC with the HDED regimen were obtained. A multiple linear relationship between CFU values at 24h with Cmax/MIC and %T>MIC was obtained. In conclusion, with the infection model tested, the likelihood of resistance to treatment may be higher against pathogens with a high MIC with the HDED regimen, considering that in many ICU patients the %T>MIC may be limited. If a sufficient value of %T>MIC (≥60%) is not reached, even though the Cmax/MIC is high, the therapeutic efficacy of the treatment may not be guaranteed. This study indicates that different AMK dosing strategies could directly influence the efficacy results in ICU patients.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Amicacina/administração & dosagem , Amicacina/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Infecções por Acinetobacter/microbiologia , Amicacina/farmacologia , Antibacterianos/farmacologia , Estado Terminal , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Modelos Estatísticos , Plasma/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...