Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(13): 8535-8541, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34101466

RESUMO

Radiocarbon (14C) measurements offer a unique investigative tool to study methane emissions by identifying fossil-fuel methane in air. Fossil-fuel methane is devoid of 14C and, when emitted to the atmosphere, causes a strong decrease in the ratio of radiocarbon to total carbon in methane (Δ14CH4). By observing the changes in Δ14CH4, the fossil fraction of methane emissions can be quantified. Presently, there are very few published Δ14CH4 measurements, mainly because it is challenging to collect and process the large volumes of air needed for radiocarbon measurements. We present a new sampling system that collects enough methane carbon for high precision Δ14CH4 measurements without having to transport large volumes of air. The system catalytically combusts CH4 into CO2 and adsorbs the combustion-derived CO2 onto a molecular sieve trap, after first removing CO2, CO, and H2O. Tests using reference air show a Δ14CH4 measurement repeatability of 5.4‰, similar or better than the precision in the most recent reported measurements. We use the system to produce the first Δ14CH4 measurements in central London and show that day-to-day differences in Δ14CH4 in these samples can be attributed to fossil methane input. The new system could be deployed in a range of settings to investigate CH4 sources.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Atmosfera , Dióxido de Carbono/análise , Fósseis , Londres , Metano/análise
2.
Sci Total Environ ; 708: 134600, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767337

RESUMO

Baseline mobile surveys of methane sources using vehicle-mounted instruments have been performed in the Fylde and Ryedale regions of Northern England over the 2016-19 period around proposed unconventional (shale) gas extraction sites. The aim was to identify and characterise methane sources ahead of hydraulically fractured shale gas extraction in the area around drilling sites. This allows a potential additional source of emissions to atmosphere to be readily distinguished from adjacent sources, should gas production take place. The surveys have used ethane:methane (C2:C1) ratios to separate combustion, thermogenic gas and biogenic sources. Sample collection of source plumes followed by high precision δ13C analysis of methane, to separate and isotopically characterise sources, adds additional biogenic source distinction between active and closed landfills, and ruminant eructations from manure. The surveys show that both drill sites and adjacent fixed monitoring sites have cow barns and gas network pipeline leaks as sources of methane within a 1 km range. These two sources are readily separated by isotopes (δ13C of -67 to -58‰ for barns, compared to -43 to -39‰ for gas leaks), and ethane:methane ratios (<0.001 for barns, compared to >0.05 for gas leaks). Under a well-mixed daytime atmospheric boundary layer these sources are generally detectable as above baseline elevations up to 100 m downwind for gas leaks and up to 500 m downwind for populated cow barns. It is considered that careful analysis of these proxies for unconventional production gas, if and when available, will allow any fugitive emissions from operations to be distinguished from surrounding sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...