Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nitric Oxide ; 146: 31-36, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574950

RESUMO

Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono , Fototerapia , Intoxicação por Monóxido de Carbono/terapia , Animais , Humanos , Fototerapia/métodos , Monóxido de Carbono
2.
J Intensive Care ; 10(1): 3, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033204

RESUMO

The significant mortality rate and prolonged ventilator days associated with invasive mechanical ventilation (IMV) in patients with severe COVID-19 have incited a debate surrounding the use of noninvasive respiratory support (NIRS) (i.e., HFNC, CPAP, NIV) as a potential treatment strategy. Central to this debate is the role of NIRS in preventing intubation in patients with mild respiratory disease and the potential beneficial effects on both patient outcome and resource utilization. However, there remains valid concern that use of NIRS may prolong time to intubation and lung protective ventilation in patients with more advanced disease, thereby worsening respiratory mechanics via self-inflicted lung injury. In addition, the risk of aerosolization with the use of NIRS has the potential to increase healthcare worker (HCW) exposure to the virus. We review the existing literature with a focus on rationale, patient selection and outcomes associated with the use of NIRS in COVID-19 and prior pandemics, as well as in patients with acute respiratory failure due to different etiologies (i.e., COPD, cardiogenic pulmonary edema, etc.) to understand the potential role of NIRS in COVID-19 patients. Based on this analysis we suggest an algorithm for NIRS in COVID-19 patients which includes indications and contraindications for use, monitoring recommendations, systems-based practices to reduce HCW exposure, and predictors of NIRS failure. We also discuss future research priorities for addressing unanswered questions regarding NIRS use in COVID-19 with the goal of improving patient outcomes.

3.
Lasers Surg Med ; 54(2): 256-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34350599

RESUMO

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO). However, hyperbaric chambers are only available in medical centers with specialized equipment, resulting in delayed therapy. Visible light dissociates CO from Hb with minimal effect on oxygen binding. In a previous study, we combined a membrane oxygenator with phototherapy at 623 nm to produce a "mini" photo-ECMO (extracorporeal membrane oxygenation) device, which improved CO elimination and survival in CO-poisoned rats. The objective of this study was to develop a larger photo-ECMO device ("maxi" photo-ECMO) and to test its ability to remove CO from a porcine model of CO poisoning. STUDY DESIGN/MATERIALS AND METHODS: The "maxi" photo-ECMO device and the photo-ECMO system (six maxi photo-ECMO devices assembled in parallel), were tested in an in vitro circuit of CO poisoning. To assess the ability of the photo-ECMO device and the photo-ECMO system to remove CO from CO-poisoned blood in vitro, the half-life of COHb (COHb-t1/2 ), as well as the percent COHb reduction in a single blood pass through the device, were assessed. In the in vivo studies, we assessed the COHb-t1/2 in a CO-poisoned pig under three conditions: (1) While the pig breathed 100% oxygen through the endotracheal tube; (2) while the pig was connected to the photo-ECMO system with no light exposure; and (3) while the pig was connected to the photo-ECMO system, which was exposed to red light. RESULTS: The photo-ECMO device was able to fully oxygenate the blood after a single pass through the device. Compared to ventilation with 100% oxygen alone, illumination with red light together with 100% oxygen was twice as efficient in removing CO from blood. Changes in gas flow rates did not alter CO elimination in one pass through the device. Increases in irradiance up to 214 mW/cm2 were associated with an increased rate of CO elimination. The photo-ECMO device was effective over a range of blood flow rates and with higher blood flow rates, more CO was eliminated. A photo-ECMO system composed of six photo-ECMO devices removed CO faster from CO-poisoned blood than a single photo-ECMO device. In a CO-poisoned pig, the photo-ECMO system increased the rate of CO elimination without significantly increasing the animal's body temperature or causing hemodynamic instability. CONCLUSION: In this study, we developed a photo-ECMO system and demonstrated its ability to remove CO from CO-poisoned 45-kg pigs. Technical modifications of the photo-ECMO system, including the development of a compact, portable device, will permit treatment of patients with CO poisoning at the scene of their poisoning, during transit to a local emergency room, and in hospitals that lack HBO facilities.


Assuntos
Intoxicação por Monóxido de Carbono , Venenos , Animais , Monóxido de Carbono , Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Humanos , Fototerapia/métodos , Ratos , Suínos
4.
J Nephrol ; 35(1): 99-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34170508

RESUMO

BACKGROUND: Acute kidney injury (AKI) in Covid-19 patients admitted to the intensive care unit (ICU) is common, and its severity may be associated with unfavorable outcomes. Severe Covid-19 fulfills the diagnostic criteria for acute respiratory distress syndrome (ARDS); however, it is unclear whether there is any relationship between ventilatory management and AKI development in Covid-19 ICU patients. PURPOSE: To describe the clinical course and outcomes of Covid-19 ICU patients, focusing on ventilatory management and factors associated with AKI development. METHODS: Single-center, retrospective observational study, which assessed AKI incidence in Covid-19 ICU patients divided by positive end expiratory pressure (PEEP) tertiles, with median levels of 9.6 (low), 12.0 (medium), and 14.7 cmH2O (high-PEEP). RESULTS: Overall mortality was 51.5%. AKI (KDIGO stage 2 or 3) occurred in 38% of 101 patients. Among the AKI patients, 19 (53%) required continuous renal replacement therapy (CRRT). In AKI patients, mortality was significantly higher versus non-AKI (81% vs. 33%, p < 0.0001). The incidence of AKI in low-, medium-, or high-PEEP patients were 16%, 38%, and 59%, respectively (p = 0.002). In a multivariate analysis, high-PEEP patients showed a higher risk of developing AKI than low-PEEP patients (OR = 4.96 [1.1-21.9] 95% CI p < 0.05). ICU mortality rate was higher in high-PEEP patients, compared to medium-PEEP or low-PEEP patients (69% vs. 44% and 42%, respectively; p = 0.057). CONCLUSION: The use of high PEEP in Covid-19 ICU patients is associated with a fivefold higher risk of AKI, leading to higher mortality. The cause and effect relationship needs further analysis.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/terapia , Humanos , Unidades de Terapia Intensiva , Respiração com Pressão Positiva/efeitos adversos , SARS-CoV-2
5.
Crit Care Explor ; 3(9): e0519, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34514421

RESUMO

The development of thrombocytopenia and thrombosis after the administration of the AstraZeneca and Johnson & Johnson/Janssen vaccines has been recently described. This new condition has been called vaccine-induced immune thrombotic thrombocytopenia. The objective of this review is to summarize the clinical characteristics and therapeutic options of vaccine-induced immune thrombotic thrombocytopenia based on available published case series. Furthermore, we provide a comparison of the diagnostic pathway and treatment recommendations provided by six major medical societies. DATA SOURCES: We searched MEDLINE, PubMed, and Cochrane Central Register of Controlled Trials databases. STUDY SELECTION: We included case series and case reports on patients who developed vaccine-induced immune thrombotic thrombocytopenia. We also included guidelines for the diagnosis and management of vaccine-induced immune thrombotic thrombocytopenia from major medical societies. DATA EXTRACTION: We examined baseline risk factors, symptoms, physical signs, laboratory and imaging findings, and treatment in patients with vaccine-induced immune thrombotic thrombocytopenia reported in the case series. We also analyzed the diagnostic and treatment recommendations provided by major societal guidelines on the management of vaccine-induced immune thrombotic thrombocytopenia. DATA SYNTHESIS: Patients who developed vaccine-induced immune thrombotic thrombocytopenia were more likely to be young women (age 20-50) who were given the AstraZeneca or Johnson & Johnson/Janssen 4-28 days prior to presentation. Patients showed signs, symptoms, and imaging findings consistent with cerebral venous sinus thrombosis and splanchnic thrombosis. Laboratory findings showed thrombocytopenia, low fibrinogen, and elevate d-dimer levels, while positive platelet factor 4 antibodies were always positive. Major societal guidelines recommend avoidance of heparin and platelets. Treatment with nonheparin anticoagulants and IV immunoglobulin is also recommended. CONCLUSIONS: Vaccine-induced immune thrombotic thrombocytopenia is a rare but highly morbid complication related to the administration of the AstraZeneca and Johnson & Johnson/Janssen vaccines. Clinicians should be prepared for the early identification of patients with suspicious symptoms and prompt treatment should be initiated to avoid catastrophic deterioration. Major societal guidelines provide useful recommendations for the diagnosis and management of patients with vaccine-induced immune thrombotic thrombocytopenia.

6.
Postgrad Med ; 133(1): 20-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32921198

RESUMO

While COVID-19 has primarily been characterized by the respiratory impact of viral pneumonia, it affects every organ system and carries a high consequent risk of death in critically ill patients. Higher sequential organ failure assessment (SOFA) scores have been associated with increased mortality in patients critically ill patients with COVID-19. It is important that clinicians managing critically ill COVID-19 patients be aware of the multisystem impact of the disease so that care can be focused on the prevention of end-organ injuries to potentially improve clinical outcomes. We review the multisystem complications of COVID-19 and associated treatment strategies to improve the care of critically ill COVID-19 patients.


Assuntos
COVID-19/fisiopatologia , COVID-19/mortalidade , Doenças Cardiovasculares/fisiopatologia , Estado Terminal , Citocinas/biossíntese , Doenças do Sistema Endócrino/fisiopatologia , Gastroenteropatias/fisiopatologia , Doenças Hematológicas/fisiopatologia , Humanos , Nefropatias/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Obesidade/fisiopatologia , Escores de Disfunção Orgânica , Doenças Respiratórias/fisiopatologia , Fatores de Risco , SARS-CoV-2 , Dermatopatias/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia
7.
Sci Transl Med ; 11(513)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597752

RESUMO

Inhaled carbon monoxide (CO) displaces oxygen from hemoglobin, reducing the capacity of blood to carry oxygen. Current treatments for CO-poisoned patients involve administration of 100% oxygen; however, when CO poisoning is associated with acute lung injury secondary to smoke inhalation, burns, or trauma, breathing 100% oxygen may be ineffective. Visible light dissociates CO from hemoglobin. We hypothesized that the exposure of blood to visible light while passing through a membrane oxygenator would increase the rate of CO elimination in vivo. We developed a membrane oxygenator with optimal characteristics to facilitate exposure of blood to visible light and tested the device in a rat model of CO poisoning, with or without concomitant lung injury. Compared to ventilation with 100% oxygen, the addition of extracorporeal removal of CO with phototherapy (ECCOR-P) doubled the rate of CO elimination in CO-poisoned rats with normal lungs. In CO-poisoned rats with acute lung injury, treatment with ECCOR-P increased the rate of CO removal by threefold compared to ventilation with 100% oxygen alone and was associated with improved survival. Further development and adaptation of this extracorporeal CO photo-removal device for clinical use may provide additional benefits for CO-poisoned patients, especially for those with concurrent acute lung injury.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Oxigenação por Membrana Extracorpórea/métodos , Fototerapia/métodos , Lesão Pulmonar Aguda/terapia , Animais , Monóxido de Carbono/metabolismo , Hemoglobinas/metabolismo , Masculino , Ratos
8.
Cell Metab ; 30(4): 824-832.e3, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402314

RESUMO

Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.


Assuntos
Encéfalo/metabolismo , Monóxido de Carbono/uso terapêutico , Hiperóxia/terapia , Doença de Leigh/terapia , Oxigênio/metabolismo , Anemia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Hiperóxia/metabolismo , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Doença de Leigh/metabolismo , Camundongos
10.
Shock ; 47(6): 735-742, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27861257

RESUMO

BACKGROUND: Carbon monoxide (CO) poisoning is a common cause of poison-related mortality. CO binds to hemoglobin in the blood to form carboxyhemoglobin (COHb), impairing oxygen delivery to peripheral tissues. Current treatment of CO-poisoned patients involves oxygen administration to rapidly remove CO and restore oxygen delivery. Light dissociates CO from COHb with high efficiency. Exposure of murine lungs to visible laser-generated light improved the CO elimination rate in vivo. The aims of this study were to apply pulmonary phototherapy to a larger animal model of CO poisoning, to test novel approaches to light delivery, and to examine the effect of chemiluminescence-generated light on the CO elimination rate. METHODS: Anesthetized and mechanically ventilated rats were poisoned with CO and subsequently treated with air or oxygen combined with or without pulmonary phototherapy delivered directly to the lungs of animals at thoracotomy, via intrapleural optical fibers or generated by a chemiluminescent reaction. RESULTS: Direct pulmonary phototherapy dissociated CO from COHb reducing COHb half-life by 38%. Early treatment with phototherapy in critically CO poisoned rats improved lactate clearance. Light delivered to the lungs of rats via intrapleural optical fibers increased the rate of CO elimination without requiring a thoracotomy, as demonstrated by a 16% reduction in COHb half-life. Light generated in the pleural spaces by a chemiluminescent reaction increased the rate of CO elimination in rats breathing oxygen, reducing the COHb half-life by 12%. CONCLUSIONS: Successful application of pulmonary phototherapy in larger animals and humans may represent a significant advance in the treatment of CO-poisoned patients.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Fototerapia/métodos , Androstanóis/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal , Monóxido de Carbono/toxicidade , Artérias Carótidas/efeitos dos fármacos , Modelos Animais de Doenças , Fentanila/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hemoglobinas/metabolismo , Injeções Intraperitoneais , Ketamina/farmacologia , Luminescência , Masculino , Ratos , Ratos Sprague-Dawley , Rocurônio , Traqueotomia
11.
Nitric Oxide ; 60: 16-23, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27592386

RESUMO

Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 µg/day) and the platinum-nickel ground electrode (-55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Contaminação de Medicamentos/prevenção & controle , Óxido Nítrico/administração & dosagem , Administração por Inalação , Filtros de Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Animais , Eletrodos , Filtração , Irídio/química , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Metais Pesados/análise , Metais Pesados/química , Metais Pesados/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/efeitos adversos , Óxido Nítrico/química , Temperatura
12.
Ann Intensive Care ; 6(1): 72, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27447787

RESUMO

BACKGROUND: Although the loop-diuretic furosemide is widely employed in critically ill patients with known long-term effects on plasma electrolytes, accurate data describing its acute effects on renal electrolyte handling and the generation of plasma electrolyte alterations are lacking. We hypothesized that the long-term effects of furosemide on plasma electrolytes and acid-base depend on its immediate effects on electrolyte excretion rate and patient clinical baseline characteristics. By monitoring urinary electrolytes quasi-continuously, we aimed to verify this hypothesis in a cohort of surgical ICU patients with normal renal function. METHODS: We retrospectively enrolled 39 consecutive patients admitted to a postoperative ICU after major surgery, and receiving single low-dose intravenous administration of furosemide. Urinary output, pH, sodium [Na(+)], potassium [K(+)], chloride [Cl(-)] and ammonium [NH4 (+)] concentrations were measured every 10 min for three to 8 h. Urinary anion gap (AG), electrolyte excretion rate, fractional excretion (Fe) and time constant of urinary [Na(+)] variation (τNa(+)) were calculated. RESULTS: Ten minutes after furosemide administration (12 ± 5 mg), urinary [Na(+)] and [Cl(-)], and their excretion rates, increased to similar levels (P < 0.001). After the first hour, urinary [Cl(-)] decreased less rapidly than [Na(+)], leading to a reduction in urinary AG and pH and an increment in urinary [NH4 (+)] (P < 0.001). Median urinary [Cl(-)] over the first 3-h period was higher than baseline urinary and plasmatic [Cl(-)] (P < 0.001). During the first 2 h, difference between FeCl(-) and FeNa(+) increased (P < 0.05). Baseline higher values of central venous pressure and FeNa(+) were associated with greater increases in FeNa(+) after furosemide (P = 0.03 and P = 0.007), whereas higher values of mean arterial and central venous pressures were associated with a longer τNa(+) (P < 0.05). In patients receiving multiple administrations (n = 11), arterial pH, base excess and strong ion difference increased, due to a decrease in plasmatic [Cl(-)]. CONCLUSIONS: Low-dose furosemide administration immediately modifies urinary electrolyte excretion rates, likely in relation to the ongoing proximal tubular activity, unveiled by its inhibitory action on Henle's loop. Such effects, when cumulative, found the bases for the long-term alterations observed. Real-time urinary electrolyte monitoring may help in tailoring patient diuretic and hemodynamic therapies.

13.
Curr Opin Crit Care ; 22(5): 428-36, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27467273

RESUMO

PURPOSE OF REVIEW: The review focuses on fluid resuscitation of critically ill patients with either colloid or crystalloid solutions. RECENT FINDINGS: In healthy patients, the volume expanding effect of colloids is greater than that of crystalloids. However, in critically ill patients, a similar amount of crystalloids and colloids is required for fluid resuscitation, suggesting a lower efficiency of colloids when capillary permeability is increased, and endothelial glycocalyx disrupted. Recent studies on synthetic colloids in surgical patients confirmed the increased risk of renal failure reported in large clinical trials performed in critically ill patients. Experimental studies suggest that albumin maintains plasma volume expansion efficiency even when the capillary permeability is impaired, and that extravasation of albumin to the interstitium is lower than that of hydroxyethyl starch. SUMMARY: Fluid administration should be tailored to patient characteristics. Synthetic colloids should be avoided when possible, especially in patients at risk for kidney injury. In critically ill patients with suspected increased permeability, colloids may not be superior to crystalloids in expanding plasma volume. Albumin appears to be less harmful than synthetic colloids, although its beneficial effects need to be further investigated. The endothelial glycocalyx layer is the key structure finely regulating intravascular fluid distribution.


Assuntos
Albuminas/uso terapêutico , Estado Terminal/terapia , Gelatina/uso terapêutico , Soluções Isotônicas/uso terapêutico , Soluções para Reidratação/uso terapêutico , Ressuscitação/métodos , Soluções Cristaloides , Hidratação/métodos , Humanos , Soluções Isotônicas/administração & dosagem , Resultado do Tratamento
14.
Science ; 352(6281): 54-61, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26917594

RESUMO

Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction.


Assuntos
Doença de Leigh/genética , Doença de Leigh/terapia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Anaerobiose , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Proteínas de Bactérias , Biomarcadores/sangue , Temperatura Corporal , Peso Corporal , Proteína 9 Associada à CRISPR , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Endonucleases , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Células K562 , Doença de Leigh/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Respiração , Supressão Genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Peixe-Zebra
15.
Am J Respir Crit Care Med ; 192(10): 1191-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26214119

RESUMO

RATIONALE: Carbon monoxide (CO) exposure is a leading cause of poison-related mortality. CO binds to Hb, forming carboxyhemoglobin (COHb), and produces tissue damage. Treatment of CO poisoning requires rapid removal of CO and restoration of oxygen delivery. Visible light is known to effectively dissociate CO from Hb, with a single photon dissociating one CO molecule. OBJECTIVES: To determine whether illumination of the lungs of CO-poisoned mice causes dissociation of COHb from blood transiting the lungs, releasing CO into alveoli and thereby enhancing the rate of CO elimination. METHODS: We developed a model of CO poisoning in anesthetized and mechanically ventilated mice to assess the effects of direct lung illumination (phototherapy) on the CO elimination rate. Light at wavelengths between 532 and 690 nm was tested. The effect of lung phototherapy administered during CO poisoning was also studied. To avoid a thoracotomy, we assessed the effect of lung phototherapy delivered to murine lungs via an optical fiber placed in the esophagus. MEASUREMENTS AND MAIN RESULTS: In CO-poisoned mice, phototherapy of exposed lungs at 532, 570, 592, and 628 nm dissociated CO from Hb and doubled the CO elimination rate. Phototherapy administered during severe CO poisoning limited the blood COHb increase and improved the survival rate. Noninvasive transesophageal phototherapy delivered to murine lungs via an optical fiber increased the rate of CO elimination while avoiding a thoracotomy. CONCLUSIONS: Future development and scaling up of lung phototherapy for patients with CO exposure may provide a significant advance for treating and preventing CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Fototerapia/métodos , Animais , Intoxicação por Monóxido de Carbono/sangue , Carboxihemoglobina/análise , Modelos Animais de Doenças , Taxa de Depuração Metabólica/fisiologia , Camundongos
16.
Am J Respir Cell Mol Biol ; 52(5): 563-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25233285

RESUMO

Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to the regulation of pulmonary vascular tone and hypoxic pulmonary vasoconstriction. We investigated whether the attenuated acute vasoconstrictor response to hypoxic exposure of Cyp2j(-/-) mice would protect these mice against the pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia. Cyp2j(-/-) and Cyp2j(+/+) male and female mice continuously breathed an inspired oxygen fraction of 0.21 (normoxia) or 0.10 (hypoxia) in a normobaric chamber for 6 weeks. We assessed hemoglobin (Hb) concentrations, right ventricular (RV) systolic pressure (RVSP), and transthoracic echocardiographic parameters (pulmonary acceleration time [PAT] and RV wall thickness). Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels were measured in Cyp2j(-/-) and Cyp2j(+/+) male mice. At baseline, Cyp2j(-/-) and Cyp2j(+/+) mice had similar Hb levels and RVSP while breathing air. After 6 weeks of hypoxia, circulating Hb concentrations increased but did not differ between Cyp2j(-/-) and Cyp2j(+/+) mice. Chronic hypoxia increased RVSP in Cyp2j(-/-) and Cyp2j(+/+) mice of either gender. Exposure to chronic hypoxia decreased PAT and increased RV wall thickness in both genotypes and genders to a similar extent. Prolonged exposure to hypoxia produced similar levels of RV hypertrophy in both genotypes of either gender. Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels did not differ between Cyp2j(-/-) and Cyp2j(+/+) male mice after breathing at normoxia or hypoxia for 6 weeks. These results suggest that murine Cyp2j deficiency does not attenuate the development of murine pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia in mice of both genders.


Assuntos
Sistema Enzimático do Citocromo P-450/deficiência , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Animais , Pressão Arterial , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Genótipo , Hemoglobinas/metabolismo , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , RNA Mensageiro/metabolismo , Fatores de Tempo , Remodelação Vascular
17.
Anaesthesiol Intensive Ther ; 46(5): 350-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25432555

RESUMO

Intravenous fluid administration is a medical intervention performed worldwide on a daily basis. Nevertheless, only a few physicians are aware of the characteristics of intravenous fluids and their possible effects on plasma acid-base equilibrium. According to Stewart's theory, pH is independently regulated by three variables: partial pressure of carbon dioxide, strong ion difference (SID), and total amount of weak acids (ATOT). When fluids are infused, plasma SID and ATOT tend toward the SID and ATOT of the administered fluid. Depending on their composition, fluids can therefore lower, increase, or leave pH unchanged. As a general rule, crystalloids having a SID greater than plasma bicarbonate concentration (HCO3-) cause an increase in plasma pH (alkalosis), those having a SID lower than HCO3- cause a decrease in plasma pH (acidosis), while crystalloids with a SID equal to HCO3- leave pH unchanged, regardless of the extent of the dilution. Colloids and blood components are composed of a crystalloid solution as solvent, and the abovementioned rules partially hold true also for these fluids. The scenario is however complicated by the possible presence of weak anions (albumin, phosphates and gelatins) and their effect on plasma pH. The present manuscript summarises the characteristics of crystalloids, colloids, buffer solutions and blood components and reviews their effect on acid-base equilibrium. Understanding the composition of intravenous fluids, along with the application of simple physicochemical rules best described by Stewart's approach, are pivotal steps to fully elucidate and predict alterations of plasma acid-base equilibrium induced by fluid therapy.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Transfusão de Componentes Sanguíneos/efeitos adversos , Transfusão de Componentes Sanguíneos/métodos , Coloides/efeitos adversos , Coloides/uso terapêutico , Soluções Isotônicas/efeitos adversos , Soluções Isotônicas/uso terapêutico , Soluções/efeitos adversos , Soluções/uso terapêutico , Coloides/administração & dosagem , Soluções Cristaloides , Hidratação , Humanos , Infusões Intravenosas , Soluções Isotônicas/administração & dosagem , Soluções/administração & dosagem , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...