Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 16690, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404891

RESUMO

We report a systematic theoretical and experimental investigation on the electronic transport evolution in metallic and semiconducting carbon nanotubes thin films enriched by gold nanocrystals. We used an ultra-clean production method of both types of single-walled carbon nanotube thin films with/without gold nanocrystals, which were uniformly dispersed in the whole volume of the thin films, causing a modification of the doping level of the films (verified by Raman spectroscopy). We propose a modification of the electronic transport model with the additional high-temperature features that allow us to interpret the transport within a broader temperature range and that are related to the conductivity type of carbon nanotubes. Moreover, we demonstrate, that the proposed model is also working for thin films with the addition of gold nanocrystals, and only a change of the conductivity level of our samples is observed caused by modification of potential barriers between carbon nanotubes. We also find unusual behavior of doped metallic carbon nanotube thin film, which lowers its conductivity due to doping.

3.
Sci Rep ; 8(1): 9132, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904143

RESUMO

In this work, we have prepared a series of polydimethylsiloxane (PDMS) composites containing various graphene flakes loadings (0.02-2 wt%), and their broadband optical properties are being investigated. We demonstrate the tunability and evolution of transmittance and reflection spectra of the composites in a wide spectral range (0.4-200 µm) as a function of graphene content. Using these data we derive the broadband wavelength-dependent absorption coefficient (α) values. Our results show that α is roughly constant in the visible and IR ranges, and, surprisingly, is approximately one order of magnitude lower in the terahertz regime, suggesting different terahertz radiation scattering mechanism in our composite. Our material could be useful for applications in optical communication, sensing or ultrafast photonics.

4.
J Phys Condens Matter ; 29(47): 475201, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29022883

RESUMO

We propose a method for monitoring the large-scale homogeneity of the reduction process of graphene oxide. For this purpose, a Raman mapping technique is employed to probe the evolution of the phonon properties of two different graphene oxide (GO) thin films upon controllable thermal reduction. The reduction of GO is reflected by the upshift of the statistical distribution of the relative intensity ratio of the G and D peaks (I D/I G) of the Raman spectra and is consistent with the ratio obtained for chemically reduced GO. In addition, the shifts of the position distributions of the main Raman modes ([Formula: see text], [Formula: see text]) and their cross-correlation with the I D/I G ratio provides evidence of a change of the doping level, demonstrating the influence of reduction processes on GO films.

5.
Nat Nanotechnol ; 6(6): 339-42, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21572430

RESUMO

The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.


Assuntos
Desenho de Equipamento/instrumentação , Grafite/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Dinâmica não Linear , Eletroquímica , Teste de Materiais , Movimento (Física) , Estresse Mecânico , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...