Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 12(4): e1001835, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24714165

RESUMO

Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants).


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Nicotiana/microbiologia , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/crescimento & desenvolvimento , Flores/microbiologia , Hemípteros/microbiologia , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Domínio MADS/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/virologia , Fatores de Transcrição/metabolismo
2.
Acta Parasitol ; 58(4): 453-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24338305

RESUMO

Fasciola hepatica is a liver fluke that infects 2.4 million of people and causes great economical loss in animal production. To date a 100% effective vaccine has not been developed and the disease is controlled by drug therapy. Great efforts are put into development of effective vaccine against parasite what is difficult since Fasciola spp. (like other helmints) during evolutionary process has developed sophisticated and efficient methods to evade immune response. During preliminary experiments it is convenient to use cell lines which are relatively cheap and allow for reproducible comparison of results between laboratories. We stimulated BOMA (bovine monocyte/macrophage cell line) and BOMAC (bovine macrophage cell line) with native or recombinant antigens of Fasciola hepatica and assessed IFN-γ, IL-4 and TNF-α level upon stimulation. We observed diminished secretion of proinflammatory TNF-α in LPS activated BOMA cells stimulated with Excretory/Secretory products of adult fluke (Fh-ES). We also observed greater changes in gene expression in LPS activated BOMA cells than in non activated BOMA cells upon stimulation using Fh-ES. The results show possibility of using cell lines for in vitro research of bovine immune response against liver fluke, although this model still requires validation and further characterization.


Assuntos
Antígenos de Helmintos/imunologia , Fasciola hepatica/imunologia , Proteínas de Helminto/imunologia , Animais , Antígenos de Helmintos/genética , Bovinos , Linhagem Celular , Fasciola hepatica/genética , Proteínas de Helminto/genética , Interferon gama/metabolismo , Interleucina-4/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Projetos Piloto , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...