RESUMO
Of the documented tick-borne diseases infecting humans in México, Rocky Mountain spotted fever (RMSF), caused by the Gram-negative bacterium Rickettsia rickettsii, is responsible for most fatalities. Given recent evidence of brown dog tick, Rhipicephalus sanguineus s.l., as an emerging vector of human RMSF, we aimed to evaluate dogs and their ticks for rickettsiae infections as an initial step in assessing the establishment of this pathosystem in a poorly studied region of northeastern México while evaluating the use of dogs as sentinels for transmission/human disease risk. We sampled owned dogs living in six disadvantaged neighborhoods of Reynosa, northeastern México to collect whole blood and ticks. Of 168 dogs assessed, tick infestation prevalence was 53%, composed of exclusively Rh. sanguineus s. l. (n = 2170 ticks). Using PCR and sequencing, we identified an overall rickettsiae infection prevalence of 4.1% (n = 12/292) in ticks, in which eight dogs harbored at least one infected tick. Rickettsiae infections included Rickettsia amblyommatis and Rickettsia parkeri, both of which are emerging human pathogens, as well as Candidatus Rickettsia andeanae. This is the first documentation of pathogenic Rickettsia species in Rh. sanguineus s.l. collected from dogs from northeastern México. Domestic dog infestation with Rickettsia-infected ticks indicates ongoing transmission; thus, humans are at risk for exposure, and this underscores the importance of public and veterinary health surveillance for these pathogens.
Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Rickettsia , Infestações por Carrapato , Animais , Doenças do Cão/epidemiologia , Cães , Humanos , México/epidemiologia , Rhipicephalus sanguineus/microbiologia , Rickettsia/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterináriaRESUMO
National parks attract millions of visitors each year. Park visitors, employees, and pets are at risk of infection with various zoonotic pathogens, including Trypanosoma cruzi, causative agent of Chagas disease. Big Bend National Park is located along the Texas-Mexico border in a region with endemic triatomine insects- vectors of T. cruzi- yet the degree to which the parasite is transmitted in this region is unknown. We collected triatomines for T. cruzi detection and discrete typing unit (DTU) determination, and conducted blood meal analyses to determine recent hosts. As an index of domestic/peridomestic transmission, we tested residential dogs in the Park for exposure to T. cruzi. From 2015 to 2017, 461 triatomines of three species-Triatoma rubida, Triatoma gerstaeckeri, and Triatoma protracta-were collected in and around the Park. Adult triatomine encounters peaked in June of each year (52.8% of collections). We detected an overall infection prevalence of 23.1% in adult triatomines (n = 320) and 4.2% in nymph triatomines (n = 24). DTU TcI was the only T. cruzi strain detected. Of 89 triatomines subjected to blood meal analyses, vertebrate host DNA was successfully amplified from 42 (47.2%); blood meal sources included humans, domestic animals, and avian and mammalian wildlife species. Tested dogs were considered positive if reactive on at least two independent serologic assays; we found 28.6% seroprevalence in 14 dogs. These findings reveal interactions between infected triatomines, humans, dogs, and wildlife in and around Big Bend National Park, with potential risk of human disease.