Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 25(14): 1129-35, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25089801

RESUMO

Neural stem cells from the central nervous system have the distinct capacity to give rise to clonal neurospheres. These clonal spheres are derived from a single clone-forming cell and represent homogenous, pure cell colonies. Recently, stem/progenitor cells have been isolated from the spiral ganglion of the inner ear using sphere-forming assays. However, the clonality of spiral ganglion-derived spheres has not yet been addressed in detail. Here, we report the isolation of clonal colonies from the spiral ganglion of early postnatal mice. We analyze sphere clonality using coculture experiments with transgenic cells, a semisolid assay, and culture of single cells in isolation. Our data show that sphere clonality differs in primary and secondary cultures and indicate that clonal sphere formation is dependent on specific culture parameters. We also show that the initiation of clonal colony formation does not require cell-to-cell interactions or paracrine signaling from surrounding cells. Generation of clonal colonies from spiral ganglion stem/progenitor cells might be crucial for future clinical applications because pure cell populations are considered to be more efficient and safe for therapeutic use than chimeric, heterogeneous spheres.


Assuntos
Células-Tronco Neurais/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Animais Recém-Nascidos , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Técnicas de Cocultura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdissecção , Microscopia de Fluorescência , Proteína Vermelha Fluorescente
2.
Biores Open Access ; 3(3): 88-97, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940560

RESUMO

The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...