Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 46(1): 43-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12739080

RESUMO

Dilute soda lakes are among the world's most productive environments and are usually dominated by dense blooms of cyanobacteria. Up to now, there has been little information available on heterotrophic bacterial abundance, production, and their controlling factors in these ecosystems. In the present study the main environmental factors responsible for the control of the heterotrophic bacterial community in five shallow soda pools in Eastern Austria were investigated during an annual cycle. Extremely high cyanobacterial numbers and heterotrophic bacterial numbers up to 307 x 10(9) L(-1) and 268 x 10(9) L(-1) were found, respectively. Bacterial secondary production rates up to 738 micro g C L(-1) h(-1) and specific growth rates up to 1.65 h(-1) were recorded in summer and represent the highest reported values for natural aquatic ecosystems. The combination of dense phytoplankton blooms, high temperature, high turbidity, and nutrient concentration due to evaporation is supposed to enable the development of such extremely productive microbial populations. By principal component analysis containing the data set of all five investigated pools, two factors were extracted which explained 62.5% of the total variation of the systems. The first factor could be interpreted as a turbidity factor; the second was assigned to as concentration factor. From this it was deduced that bacterial and cyanobacterial abundance were mainly controlled by wind-induced sediment resuspension and turbidity stabilized by the high pH and salinity and less by evaporative concentration of salinity and dissolved organic carbon. Bacterial production was clustered with temperature in factor 3, showing that bacterial growth was mainly controlled by temperature. The concept of describing the turbid water columns of the shallow soda pools as "fluid sediment" is discussed.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ecossistema , Meio Ambiente , Microbiologia da Água , Áustria , Contagem de Colônia Microbiana , Água Doce/química , Plâncton/metabolismo , Análise de Componente Principal , Estações do Ano
2.
Environ Microbiol ; 4(9): 546-55, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12220412

RESUMO

Diel changes in bacterial and cyanobacterial numbers, as well as heterotrophic bacterial production, were examined in two shallow alkaline pools, harbouring dense populations of cyanobacteria (up to 1100 x 109 cells l-1) and bacteria (up to 500 x 109 cells l-1). Together with the recorded bacterial production rates (925 micro gC l-1x h-1), these values are the highest reported for natural aquatic ecosystems. The investigations were performed during a fair-weather situation, and during a rapid change after a long-term fair-weather situation to thunderstorms and heavy rainfall. During fair weather, bacterial growth was significantly correlated to the diurnal light and temperature cycle. Prokaryotic abundances were fairly constant, and loss by grazing and viral lysis must have been of significant importance. During the invasion of rainy weather, the prokaryotic community showed a strong and immediate response. A significant enhancement of bacterial growth followed after rainfall, suggesting that the high salt concentrations had inhibited bacterial activity. Changes in bacterial and cyanobacterial numbers were consistent with this pattern. From comparison with the available literature, we conclude that diel changes of bacterioplankton are regulated by a complex combination of environmental factors specific for each investigated ecosystem. In the soda pools investigated, external abiotic factors were dominant on a diel scale. In larger ecosystems, such factors are much more buffered and internal biotic interactions may prevail.


Assuntos
Ecossistema , Meio Ambiente , Microbiologia da Água , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Oxigênio/metabolismo , Chuva , Cloreto de Sódio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...