Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38598843

RESUMO

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência Celular
2.
Bone ; 93: 155-166, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519972

RESUMO

Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA-6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.


Assuntos
Doenças Ósseas/genética , Osso e Ossos/patologia , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Transcriptoma/genética , Idoso , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Doenças Ósseas/patologia , Adesão Celular , Diferenciação Celular/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteogênese/genética , Fenótipo , Reprodutibilidade dos Testes , Regulação para Cima/genética
3.
Stem Cell Res ; 15(1): 231-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26135899

RESUMO

The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation and mineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1ß, CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.


Assuntos
Reação de Fase Aguda/metabolismo , Calcificação Fisiológica , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Amiloide A Sérica/metabolismo , Receptor 4 Toll-Like/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Proteínas Wnt/metabolismo
4.
Mol Cancer ; 13: 265, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25496233

RESUMO

BACKGROUND: Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects µM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy. METHOD: MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2. RESULTS: Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1. CONCLUSIONS: In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members as good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Difosfonatos/farmacologia , Probenecid/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Conexinas/metabolismo , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Feminino , Hemiterpenos/farmacologia , Humanos , Ácido Ibandrônico , Imidazóis/farmacologia , Células MCF-7 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Compostos Organofosforados/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Ácido Risedrônico , Ácido Zoledrônico
5.
PLoS One ; 7(9): e45142, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028809

RESUMO

Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79-94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of ∼30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP.Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Densidade Óssea/genética , Senescência Celular/genética , Análise por Conglomerados , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fraturas por Osteoporose/genética , Fatores de Risco
6.
PLoS One ; 7(1): e29959, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242193

RESUMO

1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, ß-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence- and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to ß-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Vitamina D/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Fator de Crescimento de Fibroblastos 23 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Vitamina D/farmacologia , beta-Galactosidase/metabolismo
7.
Bone ; 50(3): 723-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22166808

RESUMO

Bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases due to breast and prostate cancer. Recent clinical studies indicated a benefit in survival and tumor relapse with the supportive treatment of breast cancer using zoledronic acid (ZA), thus stimulating the debate about its putative anti-tumor activity in vivo. MCF-7 breast cancer cells were treated for 3 h (pulse treatment) and 72 h (permanent treatment) with ZA, and apoptosis rates and cell viability, defined as ATP content, were determined after 72 h. Permanent and pulse stimulation with ZA inhibited the viability of MCF-7 cells, which could partly be rescued by atorvastatin (Ator) pre-treatment but not by geranylgeranyl pyrophosphate (GGPP) co-treatment. Microarray analysis of ZA treated MCF-7 cells identified genes of the mevalonate pathway as significantly upregulated, which was verified by qPCR. Additionally the putative tumor suppressors krüppel-like factor 2 and 6 (KLF2 and KLF6) were markedly upregulated, while the classical proliferation marker Ki-67 was clearly downregulated. The expression of all three genes was confirmed by qPCR on mRNA level and by immunocytochemistry or Western blot staining. Expression of target genes were also analyzed in other breast (MDA-MB-231, BT-20, ZR75-1, T47D) and prostate (LNCaP, PC3) cancer cell lines by qPCR. ZA responsiveness of KLF2, KLF6 and Ki-67 could be verified in PC3 and T47D cells, KLF6 responsiveness in LNCaP and KLF2 responsiveness in MDA-MB-231 and BT-20 cells. Here we demonstrate in the apoptosis insensitive MCF-7 cell line a remarkable impact of ZA exposure on cell viability and on the regulation of putative tumor suppressors of the KLF family. The molecular mechanism involved might be the accumulation of isopentenyl pyrophosphate (IPP) and ApppI, since we could partly rescue the ZA effect by Ator pre-treatment and GGPP co-treatment. These data should stimulate further research into both the role of the mevalonate pathway and the accumulation of pyrophosphate compounds like ApppI in tumorigenesis and differentiation and their potential apart from the inhibition of mitochondrial ADP/ATP translocase and apoptosis, since such effects might well be responsible for the adjuvant ZA treatment benefit of patients suffering from breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Difosfonatos/farmacologia , Imidazóis/farmacologia , Antígeno Ki-67/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fator 6 Semelhante a Kruppel , Ácido Zoledrônico
8.
Bone ; 44(5): 858-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19442618

RESUMO

The aminobisphosphonate zoledronic acid (ZA) is a bone seeking specific inhibitor of protein farnesylation and geranylgeranylation, which causes inhibition of osteoclast function and apoptosis. It is widely used as an osteoclast targeted antiresorptive treatment of metastatic bone disease, Paget's disease and osteoporosis. Mesenchymal stem cells (MSC) and osteoblast precursors can also be targets of bisphosphonates, but the clinical relevance of these effects is under debate. We show here that ZA in vitro causes inhibition of proliferation and induction of apoptosis in hMSC, when applied in concentrations of 20 and 50 microM for more than 24 h which can be rescued by treatment with 10 microM geranylgeranyl pyrophosphate (GGPP). However, pulse stimulation for 3 and 6 h with these concentrations and subsequent culture for up to 2 weeks under osteogenic conditions exerts sustained regulation of osteogenic marker genes in hMSC. The effect on gene regulation translates into marked enhancement of mineralization, as shown by alizarin red and alkaline phosphatase staining after 4 weeks of osteogenic culture. ZA, when applied as a pulse stimulus, might therefore also stimulate osteogenic differentiation in vivo, since muM plasma concentrations can be achieved by intravenous application of 5 mg in patients. These data set the stage for the future dissection of the effects of ZA and other aminobisphosphonates on cells beyond osteoclasts, with respect to cell differentiation in benign metabolic and to antitumor efficacy in metastatic bone diseases, as well as adverse events due to putative substance accumulation in bone during long-term treatment.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Zoledrônico
9.
Biochem Biophys Res Commun ; 363(1): 209-15, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17868648

RESUMO

High glucose (HG) concentrations impair cellular functions and induce apoptosis. Exposition of mesenchymal stem cells (MSC) to HG was reported to reduce colony forming activity and induce premature senescence. We characterized the effects of HG on human MSC in vitro using telomerase-immortalized MSC (hMSC-TERT) and primary MSC (hMSC). HG (25mM) enhanced hMSC-TERT proliferation in long-term studies in contrast to hMSC where proliferation was unchanged. Thioredoxin-interacting protein, which is involved in apoptosis regulation, was stimulated by glucose in hMSC-TERT. However, apoptosis was not influenced by HG in both cell types. MSC treatment with HG favored osteogenic differentiation. MSC are resistant to HG toxicity, depending on the stemness of MSC. Proliferation and osteogenic differentiation are stimulated by HG. Effects of HG on the transient amplifying compartment of MSC may differ from those in mature cells. Further research is needed to unravel the molecular mechanisms of HG resistance of MSC.


Assuntos
Proteínas de Transporte/metabolismo , Glucose/administração & dosagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
10.
Stem Cells ; 24(5): 1226-35, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16424399

RESUMO

Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process superoxide anion to hydrogen peroxide, which is subsequently neutralized by GPx and CAT; TrxR neutralizes other ROS, such as peroxinitrite. Primary BMSCs and telomerase-immortalized human mesenchymal stem cells (hMSC-TERT) express GPx1-3, TrxR1, TrxR2, SOD1, SOD2, and CAT. We show here that in standard cell cultures (5%-10% fetal calf serum, 5-10 nM selenite), the activity of antioxidative selenoenzymes is impaired in hMSC-TERT and BMSCs. Under these conditions, the superoxide anion processing enzyme SOD1 is not sufficiently stimulated by an ROS load. Resulting oxidative stress favors generation of micronuclei in BMSCs. Supplementation of selenite (100 nM) restores basal GPx and TrxR activity, rescues basal and ROS-stimulated SOD1 mRNA expression and activity, and reduces ROS accumulation in hMSC-TERT and micronuclei generation in BMSCs. In conclusion, BMSCs in routine cell culture have low antioxidative capacity and are subjected to oxidative stress, as indicated by the generation of micronuclei. Selenite supplementation of BMSC cultures appears to be an important countermeasure to restore their antioxidative capacity and to reduce cell damage in the context of tissue engineering and transplantation procedures.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Células Estromais/efeitos dos fármacos , Sequência de Bases , Células da Medula Óssea/enzimologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Testes para Micronúcleos , Dados de Sequência Molecular , Oxirredutases/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , RNA , Espécies Reativas de Oxigênio/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...