Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Neurol ; 271(5): 2844-2849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353747

RESUMO

BACKGROUND: Disconjugate eye movements are essential for depth perception in frontal-eyed species, but their underlying neural substrates are largely unknown. Lesions in the midbrain can cause disconjugate eye movements. While vertically disconjugate eye movements have been linked to defective visuo-vestibular integration, the pathophysiology and neuroanatomy of horizontally disconjugate eye movements remains elusive. METHODS: A patient with a solitary focal midbrain lesion was examined using detailed clinical ocular motor assessments, binocular videooculography and diffusion-weighted MRI, which was co-registered to a high-resolution cytoarchitectonic MR-atlas. RESULTS: The patient exhibited both vertically and horizontally disconjugate eye alignment and nystagmus. Binocular videooculography showed a strong correlation of vertical and horizontal oscillations during fixation but not in darkness. Oscillation intensities and waveforms were modulated by fixation, illumination, and gaze position, suggesting shared visual- and vestibular-related mechanisms. The lesion was mapped to a functionally ill-defined area of the dorsal midbrain, adjacent to the posterior commissure and sparing nuclei with known roles in vertical gaze control. CONCLUSION: A circumscribed region in the dorsal midbrain appears to be a key node for disconjugate eye movements in both vertical and horizontal planes. Lesioning this area produces a unique ocular motor syndrome mirroring hallmarks of developmental strabismus and nystagmus. Further circuit-level studies could offer pivotal insights into shared pathomechanisms of acquired and developmental disorders affecting eye alignment.


Assuntos
Mesencéfalo , Humanos , Movimentos Oculares/fisiologia , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/fisiopatologia , Mesencéfalo/patologia , Nistagmo Patológico/fisiopatologia , Nistagmo Patológico/etiologia , Nistagmo Patológico/diagnóstico por imagem , Transtornos da Motilidade Ocular/fisiopatologia , Transtornos da Motilidade Ocular/etiologia
2.
Front Neurol ; 14: 1255105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046576

RESUMO

Introduction: Patients and technologists commonly describe vertigo, dizziness, and imbalance near high-field magnets, e.g., 7-Tesla (T) magnetic resonance imaging (MRI) scanners. We sought a simple way to alleviate vertigo and dizziness in high-field MRI scanners by applying the understanding of the mechanisms behind magnetic vestibular stimulation and the innate characteristics of vestibular adaptation. Methods: We first created a three-dimensional (3D) control systems model of the direct and indirect vestibulo-ocular reflex (VOR) pathways, including adaptation mechanisms. The goal was to develop a paradigm for human participants undergoing a 7T MRI scan to optimize the speed and acceleration of entry into and exit from the MRI bore to minimize unwanted vertigo. We then applied this paradigm from the model by recording 3D binocular eye movements (horizontal, vertical, and torsion) and the subjective experience of eight normal individuals within a 7T MRI. The independent variables were the duration of entry into and exit from the MRI bore, the time inside the MRI bore, and the magnetic field strength; the dependent variables were nystagmus slow-phase eye velocity (SPV) and the sensation of vertigo. Results: In the model, when the participant was exposed to a linearly increasing magnetic field strength, the per-peak (after entry into the MRI bore) and post-peak (after exiting the MRI bore) responses of nystagmus SPV were reduced with increasing duration of entry and exit, respectively. There was a greater effect on the per-peak response. The entry/exit duration and peak response were inversely related, and the nystagmus was decreased the most with the 5-min duration paradigm (the longest duration modeled). The experimental nystagmus pattern of the eight normal participants matched the model, with increasing entry duration having the strongest effect on the per-peak response of nystagmus SPV. Similarly, all participants described less vertigo with the longer duration entries. Conclusion: Increasing the duration of entry into and exit out of a 7T MRI scanner reduced or eliminated vertigo symptoms and reduced nystagmus peak SPV. Model simulations suggest that central processes of vestibular adaptation account for these effects. Therefore, 2-min entry and 20-s exit durations are a practical solution to mitigate vertigo and other discomforting symptoms associated with undergoing 7T MRI scans. In principle, these findings also apply to different magnet strengths.

3.
Ann Neurol ; 94(2): 295-308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37038843

RESUMO

OBJECTIVE: Acute dizziness/vertigo is usually due to benign inner-ear causes but is occasionally due to dangerous neurologic ones, particularly stroke. Because symptoms and signs overlap, misdiagnosis is frequent and overuse of neuroimaging is common. We assessed the accuracy of bedside findings to differentiate peripheral vestibular from central neurologic causes. METHODS: We performed a systematic search (MEDLINE and Embase) to identify studies reporting on diagnostic accuracy of physical examination in adults with acute, prolonged dizziness/vertigo ("acute vestibular syndrome" [AVS]). Diagnostic test properties were calculated for findings. Results were stratified by examiner type and stroke location. RESULTS: We identified 6,089 citations and included 14 articles representing 10 study cohorts (n = 800). The Head Impulse, Nystagmus, Test of Skew (HINTS) eye movement battery had high sensitivity 95.3% (95% confidence interval [CI] = 92.5-98.1) and specificity 92.6% (95% CI = 88.6-96.5). Sensitivity was similar by examiner type (subspecialists 94.3% [95% CI = 88.2-100.0] vs non-subspecialists 95.0% [95% CI = 91.2-98.9], p = 0.55), but specificity was higher among subspecialists (97.6% [95% CI = 94.9-100.0] vs 89.1% [95% CI = 83.0-95.2], p = 0.007). HINTS sensitivity was lower in anterior cerebellar artery (AICA) than posterior inferior cerebellar artery (PICA) strokes (84.0% [95% CI = 65.3-93.6] vs 97.7% [95% CI = 93.3-99.2], p = 0.014) but was "rescued" by the addition of bedside hearing tests (HINTS+). Severe (grade 3) gait/truncal instability had high specificity 99.2% (95% CI = 97.8-100.0) but low sensitivity 35.8% (95% CI = 5.2-66.5). Early magnetic resonance imaging (MRI)-diffusion-weighted imaging (DWI; within 24-48 hours) was falsely negative in 15% of strokes (sensitivity 85.1% [95% CI = 79.2-91.0]). INTERPRETATION: In AVS, HINTS examination by appropriately trained clinicians can differentiate peripheral from central causes and has higher diagnostic accuracy for stroke than MRI-DWI in the first 24-48 hours. These techniques should be disseminated to all clinicians evaluating dizziness/vertigo. ANN NEUROL 2023;94:295-308.


Assuntos
Nistagmo Patológico , Acidente Vascular Cerebral , Adulto , Humanos , Tontura/etiologia , Tontura/complicações , Vertigem/diagnóstico , Vertigem/etiologia , Movimentos Oculares , Nistagmo Patológico/complicações , Nistagmo Patológico/diagnóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Doença Aguda , Testes Diagnósticos de Rotina/efeitos adversos
4.
Transl Vis Sci Technol ; 12(1): 17, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630147

RESUMO

Purpose: The objective of the study is to develop deep learning models using synthetic fundus images to assess the direction (intorsion versus extorsion) and amount (physiologic versus pathologic) of static ocular torsion. Static ocular torsion assessment is an important clinical tool for classifying vertical ocular misalignment; however, current methods are time-intensive with steep learning curves for frontline providers. Methods: We used a dataset (n = 276) of right eye fundus images. The disc-foveal angle was calculated using ImageJ to generate synthetic images via image rotation. Using synthetic datasets (n = 12,740 images per model) and transfer learning (the reuse of a pretrained deep learning model on a new task), we developed a binary classifier (intorsion versus extorsion) and a multiclass classifier (physiologic versus pathologic intorsion and extorsion). Model performance was evaluated on unseen synthetic and nonsynthetic data. Results: On the synthetic dataset, the binary classifier had an accuracy and area under the receiver operating characteristic curve (AUROC) of 0.92 and 0.98, respectively, whereas the multiclass classifier had an accuracy and AUROC of 0.77 and 0.94, respectively. The binary classifier generalized well on the nonsynthetic data (accuracy = 0.94; AUROC = 1.00). Conclusions: The direction of static ocular torsion can be detected from synthetic fundus images using deep learning methods, which is key to differentiate between vestibular misalignment (skew deviation) and ocular muscle misalignment (superior oblique palsies). Translational Relevance: Given the robust performance of our models on real fundus images, similar strategies can be adopted for deep learning research in rare neuro-ophthalmologic diseases with limited datasets.


Assuntos
Aprendizado Profundo , Fundo de Olho , Curva ROC
5.
J Neurophysiol ; 129(2): 445-454, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651642

RESUMO

When the demands for visual stabilization during head rotations overwhelm the ability of the vestibuloocular reflex (VOR) to produce compensatory eye movements, the brain produces corrective saccades that bring gaze toward the fixation target, even without visual cues (covert saccades). What triggers covert saccades and what might be the role of prediction in their generation are unknown. We studied 14 subjects with acute vestibular neuritis. To minimize variability of the stimulus, head impulses were imposed with a motorized torque generator with the subject on a bite bar. Predictable and unpredictable (timing, amplitude, direction) stimuli were compared. Distributions of covert corrective saccade latencies were analyzed with a "LATER" (linear approach to threshold with ergodic rate) approach. On the affected side, VOR gain was higher (0.47 ± 0.28 vs. 0.39 ± 0.22, P ≪ 0.001) with predictable than unpredictable head impulses, and gaze error at the end of the head movement was less (5.4 ± 3.3° vs. 6.9 ± 3.3°, P ≪ 0.001). Analyzing trials with covert saccades, gaze error at saccade end was significantly less with predictable than unpredictable head impulses (4.2 ± 2.8° vs. 5.5 ± 3.2°, P ≪ 0.001). Furthermore, covert corrective saccades occurred earlier with predictable than unpredictable head impulses (140 ± 37 vs. 153 ± 37 ms, P ≪ 0.001). Using a LATER analysis with reciprobit plots, we were able to divide covert corrective saccades into two classes, early and late, with a break point in the range of 88-98 ms. We hypothesized two rise-to-threshold decision mechanisms for triggering early and late covert corrective saccades, with the first being most engaged when stimuli are predictable.NEW & NOTEWORTHY We successfully used a LATER (linear approach to threshold with ergodic rate) analysis of the latencies of corrective saccades in patients with acute vestibular neuritis. We found two types of covert saccades: early (<90 ms) and late (>90 ms) covert saccades. Predictability led to an increase in VOR gain and a decrease in saccade latency.


Assuntos
Movimentos Sacádicos , Neuronite Vestibular , Humanos , Movimentos Oculares , Reflexo Vestíbulo-Ocular , Movimentos da Cabeça
6.
Cerebellum ; 22(1): 148-154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35133635

RESUMO

We report a patient with spontaneous upbeat nystagmus (UBN) due to an ischemic lesion involving the paramedian tract (PMT) in the medulla. Eye movement recordings, using an infrared video-oculography (VOG) system, showed that the slow phase of the nystagmus was initially velocity-decreasing but gradually became velocity-increasing. Simulation of the nystagmus with a mathematical model supports a role for the PMT in relaying premotor signals for vertical gaze holding to the cerebellum. Our model shows that the disruption in cerebellar input from PMT can lead to the velocity-increasing waveform of the nystagmus, whereas the velocity-decreasing waveform could be related to a mismatch between the innervational commands to the ocular muscles (the pulse and step) needed to hold gaze steady.


Assuntos
Nistagmo Patológico , Humanos , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/etiologia , Movimentos Oculares , Cerebelo/patologia
7.
Neurol Clin Pract ; 12(5): e129-e132, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36380886

RESUMO

Background and Objectives: Lesions of the cerebellar flocculus cause enduring downbeat nystagmus (DBN) with unrelenting oscillopsia. Unlike most patients with DBN, the flocculus is structurally spared in nonalcoholic Wernicke encephalopathy (nWE) with chronic DBN. The objective was to study the effects of alcohol in nWE. Methods: We recorded eye movements of a unique patient with nWE under controlled alcohol consumption who said his oscillopsia disappeared with a few drinks of alcohol. Results: His DBN was markedly diminished by alcohol (by 77.4%), although he remained alert with normal saccades. Discussion: This striking observation may be caused by the differential effect of alcohol on the perihypoglossal complex and the paramedian tract neurons, which control the level of activity in the flocculus, with opposite (inhibition and excitation, respectively) effects. The finding suggests new ideas about the treatment and pathophysiology of DBN with a structurally intact cerebellum.

8.
J Neurol Sci ; 442: 120407, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115220

RESUMO

Periodic alternating nystagmus (PAN) is a rare oscillatory ocular motor disorder. The effects of gravity on the dynamic behavior of PAN can be studied by monitoring the nystagmus while changing head orientation. Previous studies of patients with PAN reached different conclusions about the effect of changing the orientation of the head relative to gravity on the ongoing PAN, either no effect or a damping of the nystagmus within several minutes. What neuronal circuits could account for the difference in the effects of gravity among PAN patients? We modeled how the brain resolves the tilt-translation ambiguity in normal individuals and added an unstable, oscillatory vestibular system generating PAN. PAN was suppressed in our patient in ear-down positions, in a similar pattern to that of a previously reported patient. This effect was simulated by reducing the gain of the projection of the "rotation feedback" loop to the velocity-storage integrator to approximately 5% of its normal value. With normal "rotation feedback" PAN is expected to dissipate quickly as soon as the head is rotated away from upright position. Moreover, by disconnecting the rotation feedback completely (gain = zero) the model simulated PAN that was reported to be unaffected by gravity. Thus, understanding the effect of this single parameter, the gain of the rotation feedback, can explain the observed variability among our own and previous studies.


Assuntos
Nistagmo Patológico , Nistagmo Fisiológico , Humanos , Nistagmo Patológico/etiologia , Gravitação , Rotação , Cabeça , Reflexo Vestíbulo-Ocular/fisiologia
9.
Front Neurol ; 13: 963968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034311

RESUMO

Background: Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods: We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos (n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as "nystagmus" or "no nystagmus" by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results: An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion: Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.

10.
Am J Case Rep ; 23: e935148, 2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35780294

RESUMO

BACKGROUND Acquired pendular nystagmus (APN) is a back and forth, oscillatory eye movement in which the 2 oppositely directed slow phases have similar waveforms. APN occurs commonly in multiple sclerosis and causes a disabling oscillopsia that impairs vision. Previous studies have proven that symptomatic therapy with gabapentin or memantine can reduce the nystagmus amplitude or frequency. However, the effect of these medications on visual acuity (VA) is less known and to our knowledge the impact of non-pharmacological strategies such as blinking on VA has not been reported. This is a single observational study without controls (Class IV) and is meant to suggest a future strategy for study of vision in patients with disabling nystagmus and impaired vision. CASE REPORT A 49-year-old woman with primary progressive multiple sclerosis with spastic paraparesis and a history of optic atrophy presented with asymmetrical binocular APN and bothersome oscillopsia. We found that in the eye with greater APN her visual acuity improved by 1 line (from 0.063 to 0.08 decimals) immediately after blinking. During treatment with memantine, her VA without blinking increased by 2 lines, from 0.063 to 0.12, but improved even more (from 0.12 to 0.16) after blinking. In the contralateral eye with a barely visible nystagmus, VA was reduced by 1 line briefly (~500 ms) after blinking. CONCLUSIONS In a patient with APN, blinking transiently improved vision. The combination of pharmacological treatment with memantine and the blinking strategy may induce better VA and less oscillopsia than either alone.


Assuntos
Memantina , Nistagmo Patológico , Movimentos Oculares , Feminino , Gabapentina/uso terapêutico , Humanos , Memantina/uso terapêutico , Pessoa de Meia-Idade , Nistagmo Patológico/tratamento farmacológico , Nistagmo Patológico/etiologia , Transtornos da Visão , Acuidade Visual
11.
J Neurol ; 269(12): 6642-6647, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35904591

RESUMO

Vertical pendular nystagmus (PN) rarely occurs with acute pontine lesions. To hypothesize a pathophysiology for acute vertical PN, we analyzed the clinical characteristics and quantitative eye-movement recordings of one new case with acute vertical PN and an additional 11 patients from the literature. Most patients had extensive pontine lesions causing either the locked-in syndrome or unresponsiveness, but two conscious patients had focal lesions restricted to the paramedian caudal pontine tegmentum. All patients presented a complete or partial horizontal gaze palsy, and about half showed ocular bobbing before or during the appearance of vertical PN. The vertical oscillations were conjugate at a frequency of 1-5 Hz, and the amplitudes were variable, ranging from 0.2° to 40°. The peak velocities were asymmetric in some patients, faster with downward movements. About half of the patients developed palatal tremor several weeks or months after presenting with acute vertical PN. Based on the location of the lesions and results of eye-movement recordings, we suggest two possible mechanisms for acute vertical PN; oscillations originating in the inferior olives due to disruption of the central tegmental tract or low-velocity saccadic oscillations caused by omnipause neuron damage.


Assuntos
Nistagmo Patológico , Transtornos da Motilidade Ocular , Humanos , Movimentos Oculares , Ponte/diagnóstico por imagem , Ponte/patologia , Transtornos da Motilidade Ocular/complicações , Movimento
12.
Parkinsonism Relat Disord ; 98: 99-102, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635856

RESUMO

BACKGROUND: The number of trinucleotide CAG repeats is inversely correlated with the age at onset (AAO) of motor symptoms in individuals with Spinocerebellar Ataxia type 3 (SCA 3) and may be responsible for 50%-60% of the variability in AAO. Drawing from a social determinants of health model, we sought to determine if educational attainment further contributes to the AAO and motor symptom progression of SCA 3. METHODS: We performed a retrospective chart review in which twenty individuals met criteria for inclusion and had been seen by an ataxia specialist at our hospital between January 2005 and July 2019. AAO of motor symptoms and Scale for Assessment and Rating of Ataxia (SARA) scores were used as primary outcome measures. RESULTS: Using a linear regression, we found that having greater CAG repeat length and greater than 16 years of education results in an earlier AAO. The importance of the CAG repeat length on AAO, however, is greater amongst individuals with lower education. Using a linear mixed model evaluating SARA score over time with AAO, we found that less than 16 years of education is associated with faster progression of the disease. CONCLUSION: In our group of SCA 3 patients, level of education correlated with both the AAO and SARA scores. Though our findings need to be confirmed with a larger cohort, our study suggests that level of education can have a strong influence on health outcomes in SCA 3 and possibly other groups of patients with ataxia.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Idade de Início , Escolaridade , Humanos , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/genética , Estudos Retrospectivos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/genética
14.
J Neurol ; 269(7): 3879-3890, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396603

RESUMO

Fixation nystagmus refers to the nystagmus that appears or markedly increases with fixation. While relatively common in infantile (congenital) nystagmus, acquired fixation nystagmus is unusual and has been ascribed to lesions involving the cerebellar nuclei or the fibers projecting from the cerebellum to the brainstem. We aimed to report the clinical features of patients with acquired fixation nystagmus and discuss possible mechanisms using a model simulation and diagnostic significance. We describe four patients with acquired fixation nystagmus that appears or markedly increases with visual fixation. All patients had lesions involving the cerebellum or dorsal medulla. All patients showed direction-changing gaze-evoked nystagmus, impaired smooth pursuit, and decreased vestibular responses on head-impulse tests. The clinical implication of fixation nystagmus is that it may occur in central lesions that impair both smooth pursuit and the vestibulo-ocular reflex (VOR) but without creating a spontaneous nystagmus in the dark. We develop a mathematical model that hypothesizes that fixation nystagmus reflects a central tone imbalance due to abnormal function in cerebellar circuits that normally optimize the interaction between visual following (pursuit) and VOR during attempted fixation. Patients with fixation nystagmus have central lesions involving the cerebellar circuits that are involved in visual-vestibular interactions and normally eliminate biases that cause a spontaneous nystagmus.


Assuntos
Doenças Cerebelares , Nistagmo Patológico , Doenças Cerebelares/complicações , Doenças Cerebelares/diagnóstico por imagem , Fixação Ocular , Humanos , Nistagmo Patológico/etiologia , Acompanhamento Ocular Uniforme , Reflexo Vestíbulo-Ocular/fisiologia
17.
Eur J Neurol ; 28(9): 2971-2979, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34176187

RESUMO

OBJECTIVE: Gaze-evoked nystagmus (GEN) is a central sign in patients with the acute vestibular syndrome (AVS); however, discriminating between a pathological and a physiologic GEN is a challenge. Here we evaluate GEN in patients with AVS. METHODS: In this prospective cross-sectional study, we used video-oculography (VOG) to compare GEN in the light (target at 15° eccentric) in 64 healthy subjects with 47 patients seen in the emergency department (ED) who had AVS; 35 with vestibular neuritis and 12 with stroke. All patients with an initial non-diagnostic MRI received a confirmatory, delayed MRI as a reference standard in detecting stroke. RESULTS: Healthy subjects with GEN had a time constant of centripetal drift >18 s. VOG identified pathologic GEN (time constant ≤ 18 s) in 33% of patients with vestibular strokes, specificity was 100%, accuracy was 83%. Results were equivalent to examination by a clinical expert. As expected, since all patients with GEN had a SN in straight-ahead position, they showed the pattern of a Bruns' nystagmus. CONCLUSIONS: One third of patients with AVS due to central vestibular strokes had a spontaneous SN in straight-ahead gaze and a pathological GEN, producing the pattern of a Bruns' nystagmus with a shift of the null position. The localization of the side of the lesion based on the null was not consistent, presumably because the circuits underlying gaze-holding are widespread in the brainstem and cerebellum. Nevertheless, automated quantification of GEN with VOG was specific, and accurately identified patients in the ED with AVS due to strokes.


Assuntos
Nistagmo Patológico , Acidente Vascular Cerebral , Estudos Transversais , Humanos , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/etiologia , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Vertigem
18.
J Comput Neurosci ; 49(3): 295-307, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003422

RESUMO

A woman, age 44, with a positive anti-YO paraneoplastic cerebellar syndrome and normal imaging developed an ocular motor disorder including periodic alternating nystagmus (PAN), gaze-evoked nystagmus (GEN) and rebound nystagmus (RN). During fixation there was typical PAN but changes in gaze position evoked complex, time-varying oscillations of GEN and RN. To unravel the pathophysiology of this unusual pattern of nystagmus, we developed a mathematical model of normal function of the circuits mediating the vestibular-ocular reflex and gaze-holding including their adaptive mechanisms. Simulations showed that all the findings of our patient could be explained by two, small, isolated changes in cerebellar circuits: reducing the time constant of the gaze-holding integrator, producing GEN and RN, and increasing the gain of the vestibular velocity-storage positive feedback loop, producing PAN. We conclude that the gaze- and time-varying pattern of nystagmus in our patient can be accounted for by superposition of one model that produces typical PAN and another model that produces typical GEN and RN, without requiring a new oscillator in the gaze-holding system or a more complex, nonlinear interaction between the two models. This analysis suggest a strategy for uncovering gaze-evoked and rebound nystagmus in the setting of a time-varying nystagmus such as PAN. Our results are also consistent with current ideas of compartmentalization of cerebellar functions for the control of the vestibular velocity-storage mechanism (nodulus and ventral uvula) and for holding horizontal gaze steady (the flocculus and tonsil).


Assuntos
Doenças Cerebelares , Nistagmo Patológico , Adulto , Doenças Cerebelares/complicações , Cerebelo , Movimentos Oculares , Feminino , Humanos , Modelos Neurológicos
19.
Eur J Neurol ; 28(8): 2614-2621, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33983645

RESUMO

BACKGROUND AND PURPOSE: A peripheral spontaneous nystagmus (SN) is typically enhanced or revealed by removing fixation. Conversely, failure of fixation suppression of SN is usually a sign of a central disorder. Based on Luebke and Robinson (Vision Res 1988, vol. 28 (8), pp. 941-946), who suggested that the normal fixation mechanism is disengaged during pursuit, it is hypothesized that vertical tracking in the light would bring out or enhance a horizontal SN. METHODS: Eighteen patients with acute vestibular neuritis were studied. Eye movements were recorded using video-oculography at straight-ahead gaze with and without visual fixation, and during smooth pursuit. The slow-phase velocity and the fixation suppression indices of nystagmus (relative to SN in darkness) were compared in each condition. RESULTS: During vertical tracking, the slow-phase velocity of horizontal SN with eyes near straight-ahead gaze was significantly higher (median 2.7°/s) than under static visual fixation (median 1.2°/s). Likewise, the fixation index was significantly higher (worse suppression) during pursuit (median 48%) than during fixation (median 26%). A release of SN was also suggested during horizontal pursuit, if one assumes superposition of SN on a normal and symmetrical pursuit capability.


Assuntos
Nistagmo Patológico , Acompanhamento Ocular Uniforme , Movimentos Oculares , Fixação Ocular , Humanos
20.
JAMA Otolaryngol Head Neck Surg ; 147(6): 518-525, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764386

RESUMO

Importance: Video-oculography (VOG) goggles have been integrated into the assessment of semicircular canal function in patients with vestibular disorders. However, a similar bedside VOG method for testing otolith function is lacking. Objective: To evaluate the use of VOG-based measurement of ocular counter-roll (vOCR) as a clinical test of otolith function. Design, Setting, and Participants: A case-control study was conducted to compare vOCR measurement among patients at various stages of unilateral loss of vestibular function with healthy controls. The receiver operating characteristic curve method was used to determine the diagnostic accuracy of the vOCR test in detecting loss of otolith function. Participants were recruited at a tertiary center including the Johns Hopkins outpatient clinic and Johns Hopkins Hospital, Baltimore, Maryland. Participants included 56 individuals with acute (≤4 weeks after surgery), subacute (4 weeks-6 months after surgery), and chronic (>6 months after surgery) unilateral vestibular loss as well as healthy controls. A simple bedside maneuver with en bloc, 30° lateral tilt of the head and trunk was used for vOCR measurement. The study was conducted from February 2, 2017, to March 10, 2019. Intervention: In each participant vOCR was measured during static tilts of the head and trunk en bloc. Main Outcomes and Measures: The vOCR measurements and diagnostic accuracy of vOCR in detecting patients with loss of vestibular function from healthy controls. Results: Of the 56 participants, 28 (50.0%) were men; mean (SD) age was 53.5 (11.4) years. The mean (SD) time of acute unilateral vestibular loss was 9 (7) days (range, 2-17 days) in the acute group, 61 (39) days (range, 28-172 days) in the subacute group, and 985 (1066) days (range 185-4200 days) in the chronic group. The vOCR test showed reduction on the side of vestibular loss, and the deficit was greater in patients with acute and subacute vestibular loss than in patients with chronic loss and healthy controls (acute vs chronic: -1.81°; 95% CI, -3.45° to -0.17°; acute vs control: -3.18°; 95% CI, -4.83° to -1.54°; subacute vs chronic: -0.63°; 95% CI, -2.28° to 1.01°; subacute vs control: -2.01°; 95% CI, -3.65° to -0.36°; acute vs subacute: -1.17°; 95% CI, -2.88° to 0.52°; and chronic vs control: -1.37°; 95% CI, -2.96° to 0.21°). The asymmetry in vOCR between the side of vestibular loss and healthy side was significantly higher in patients with acute vs chronic loss (0.28; 95% CI, 0.06-0.51). Overall, the performance of the vOCR test in discriminating between patients with vestibular loss and healthy controls was 0.83 (area under the receiver operating characteristic curve). The best vOCR threshold to detect vestibular loss at the 30° tilt was 4.5°, with a sensitivity of 80% (95% CI, 0.62%-0.88%) and specificity of 82% (95% CI, 0.57%-1.00%). Conclusions and Relevance: The findings of this case-control study suggest that the vOCR test can be performed with a simple bedside maneuver and may be used to detect or track loss of otolith function.


Assuntos
Membrana dos Otólitos/fisiopatologia , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/fisiopatologia , Testes de Função Vestibular/métodos , Estudos de Casos e Controles , Feminino , Movimentos da Cabeça , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...