Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 140185, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716568

RESUMO

Petroleum hydrocarbon (PHC) contamination in soil is ubiquitous and poses harmful consequences to many organisms. The toxicity of PHC-impacted soil is difficult to predict due to variations in mixture composition and the impacts of natural weathering processes. Hence, high-throughput methods to assess PHC-impacted soils is required to expedite land management decisions. Next-generation sequencing is a robust tool that allows researchers to investigate the effects of contaminants on the transcriptome of organisms and identify molecular biomarkers. In this study, the effects of PHCs on conventional endpoints (i.e., survival and reproduction) and gene expression rates of a model springtail species, Folsomia candida were investigated. Age-synchronized F. candida were exposed to ecologically-relevant concentrations of soils spiked with fresh crude oil to calculate the reproductive EC25 and EC50 values using conventional toxicity testing. Soils spiked to these concentrations were then used to evaluate effects on the F. candida transcriptome over a 7-day exposure period. RNA-seq analysis found 98 and 132 differentially expressed genes when compared to the control for the EC25 and EC50 treatment groups, respectively. The majority of up-regulated genes were related to xenobiotic biotransformation reactions and oxidative stress response, while down-regulated genes coded for carbohydrate and peptide metabolic processes. Promotion of the pentose phosphate pathway was also found. Results suggest that the decreased reproduction rates of F. candida exposed to PHCs is due to energy constraints caused by inhibition of carbohydrate metabolic processes and allocation of remaining energy to detoxify xenobiotics. These findings provide insights into the molecular effects in F. candida following exposure to crude oil for seven days and highlight their potential to be used as a high-throughput screening test for PHC-contaminated sites. Adverse molecular effects can be measured as early as 24 h following exposure, whereas conventional toxicity tests may require a minimum of four weeks.


Assuntos
Artrópodes , Petróleo , Poluentes do Solo , Animais , Petróleo/toxicidade , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Perfilação da Expressão Gênica , Reprodução , Estresse Oxidativo , Hidrocarbonetos/toxicidade , Hidrocarbonetos/metabolismo , Solo/química
2.
Environ Res ; 238(Pt 1): 117136, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717802

RESUMO

Canada has extensive petroleum hydrocarbon (PHC) contamination in northern areas and the boreal forest region from historical oil and gas activities. Since the 2013 standardization of boreal forest species for plant toxicity testing in Canada, there has been a need to build the primary literature of the toxicity of weathered PHCs to these species. A series of toxicity experiments were carried out using fine-grained (<0.005-0.425 mm) background (100 total mg/kg total PHCs) and weathered contaminated soil (11,900 mg/kg total PHCs) collected from a contaminated site in northern Ontario, Canada. The PHC mixture in the contaminated site soil was characterized through Canadian Council of Ministers of the Environment Fractions, as indicated by the number equivalent normal straight-chain hydrocarbons (nC). The soil was highly contaminated with Fraction 2 (>nC10 to nC16) at 4790 mg/kg and Fraction 3 (>nC16 to nC34) at 4960 mg/kg. Five plant species (Elymus trachycaulus, Achillea millefolium, Picea mariana, Salix bebbiana, and Alnus viridis) were grown from seed in 0%, 25%, 50%, 75%, and 100% relative contamination mixtures of the PHC-contaminated and background soil from the site over 2-6 weeks. All five species showed significant inhibition in shoot length, shoot weight, root length, and/or root weight (Kruskal-Wallis Tests: p < 0.05, df = 4.0). Measurements of 25% inhibitory concentrations (IC25) following PHC toxicity experiments revealed that S. bebbiana was most significantly impaired by the PHC-contaminated soil (410-990 mg/kg total PHCs), where it showed <35% germination. This study indicates that natural weathering of Fraction 2- and Fraction 3-concentrated soil did not eliminate phytotoxicity to boreal plant species. Furthermore, it builds on the limited existing literature for toxicity of PHCs on boreal plants and supports site remediation to existing Canadian provincial PHC guidelines.


Assuntos
Petróleo , Poluentes do Solo , Solo , Petróleo/toxicidade , Hidrocarbonetos/toxicidade , Plantas , Ontário , Poluentes do Solo/análise , Biodegradação Ambiental
3.
Heliyon ; 9(1): e12850, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647347

RESUMO

Soil invertebrate ecotoxicological tests are important when making informed site-management decisions. However, traditional tests are time-consuming and require quantification of high numbers of soil invertebrates burrowed beneath the surface of soil. A commonly used technique to extract invertebrates from the soil is the floatation method. Due to the movement of Collembola, and the presence of small soil particulates and bubbles on the surface of the water, automatic image analysis software may inaccurately quantify the true number of individuals present. Hence, manual counting immediately following extraction, or from images, is still the most effective method utilized for quantifying floated soil invertebrates. This study investigated three novel techniques; the use of an ice-water bath, chest freezer (-12 °C) and ethanol to temporarily immobilize groups of 35 Folsomia candida individuals to increase accuracy during the quantification step. Active thermography to aid automatic image analysis was also investigated. Results show that while thermoimaging did not provide a distinct advantage in differentiating soil invertebrates from soil particles, both an ice-water bath and 4.75% ethanol solution were extremely effective at temporarily immobilizing F. candida with no apparent ill effects. The outcome of this study will assist future soil invertebrate research by increasing the accuracy of invertebrate quantifications. In addition, as the techniques caused no mortality to the invertebrates, the same individuals remain available for continuous monitoring experiments, repeated exposure, and/or multi-generational studies.

4.
Ecotoxicology ; 31(8): 1287-1298, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36125662

RESUMO

Remedial guidelines for petroleum hydrocarbons (PHCs) in soil aid in the mitigation of risks to human health and the environmental. However, some remediation guidelines may overestimate the potential for adverse effects to native plant species, contributing to unnecessary remedial efforts in attempts to meet the guidelines. At sites where PHC-contaminated soils undergo weathering, some PHCs may persist but with decreased bioavailability to organisms. In this study, the toxicity of both coarse and fine-grained subarctic soils, contaminated with weathered PHCs were assessed using five native plant species (Picea mariana, Achillea millefolium, Alnus viridis, Elymus trachycaulus and Salix bebbiana). Soil toxicity tests were conducted in a growth chamber with parameters set to simulate the site's subarctic climate conditions. Reference toxicant tests using boric acid were conducted to provide confidence in the interpretation of the results for the PHC-contaminated soils, and also provide new information on the sensitivities of the four boreal species to boric acid. All plants exhibited reduced growth and germination rates as boric acid concentrations increased. Despite exceeding the Canada-wide standard guidelines for Fraction 3 PHCs, field-collected contaminated soils had no significant negative impacts on the growth (i.e., length, dry weight and emergence) of any of the plant species tested.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ácidos Bóricos , Canadá , Humanos , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Plantas , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
J Environ Qual ; 50(4): 877-888, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048608

RESUMO

Levels of environmental mercury (Hg) within the Canadian Arctic are a current area of concern. Although efforts have been made to reduce Hg released into the environment, levels remain elevated in flora and fauna. This study examined the concentrations of Hg in soil and naturally occurring edible plant and fungi species, identified by local Inuit residents, from eight locations in Iqaluit, Nunavut, and the surrounding area during the summers of 2018 and 2019. Total Hg concentrations were obtained in 24 soil samples, 112 flora samples from 23 plant and five lichen species, and 157 fungal samples from eight species. Median Hg concentrations in plant species ranged from 0.005 µg g-1 Hg dry weight (dw) in Saxifraga cernua to 0.19 µg g-1 Hg dw in Oxytropis maydelliana. Median concentrations in edible fungi species ranged from 0.084 µg g-1 Hg dw in the Cortinarius croceus (non-puffball species) to 1.6 µg g-1 Hg dw in Lycoperdon perlatum (a puffball mushroom). Additionally, median Hg concentration in puffball species (1.4 µg g-1 ) were higher than non-puffball species (0.12 µg g-1 ). Three puffball species were assessed for methylmercury (MeHg), with mean concentrations ranging from 0.013 to 0.085 µg g-1 MeHg dw. Limited research has been conducted on Hg uptake in naturally occurring edible plant and fungi species of the Canadian Arctic. This study contributes important information on Hg accumulation and processes in edible plant and fungi Arctic species, is the first to focus on plants used by the local Indigenous community, and demonstrates a need for further studies to assess Hg in Arctic environments.


Assuntos
Mercúrio , Agaricales , Regiões Árticas , Canadá , Cortinarius , Monitoramento Ambiental , Fungos , Mercúrio/análise , Plantas Comestíveis
6.
Environ Pollut ; 265(Pt B): 114963, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806446

RESUMO

Soil and freshwater salinization are growing issues worldwide. Road salt, primarily sodium chloride (NaCl), is a significant contributor to this issue in North America. In this study, the ability of three native Canadian halophytes (Atriplex patula, Atriplex hortensis, and Atriplex canescans) to remove Na+ and Cl- from contaminated soil was investigated. Field and greenhouse studies determined plant survivability in roadside areas, as well as Na+ and Cl- extraction levels. The Atriplex spp. accumulated 18-55 mg Na+ g-1 dry weight (DW) and 41-64 mg Cl- g-1 DW when grown for a two-month period in soil spiked with NaCl to simulate a very highly contaminated roadside. Using A. patula, it would theoretically take 6 growing seasons to remove all salt from an area contaminated with 1540 µg Cl- g-1, while A. hortensis and A. canescens would take 19 and 9 years, respectively. Salt content in shoot components (seeds, stem, leaves) was determined to provide further insight on phytoextraction processes. In all three Atriplex species, the leaves had the highest Cl- concentration, followed by the seeds (bracteoles included), with the lowest concentrations found in the stem. These novel findings provide important information for road salt remediation and indicate that using Atriplex spp. may be a viable way in which to reduce the environmental impact of road salting.


Assuntos
Atriplex , Biodegradação Ambiental , Canadá , América do Norte , Cloreto de Sódio , Solo
7.
Int J Phytoremediation ; 22(11): 1122-1128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32151140

RESUMO

Four natives Canadian recretohalophytic species: Atriplex canescens, Armeria maritima, Spartina pectinata, and Distichlis spicata were examined to determine their relative uptake and excretion of chloride in the context of phytoremediation. Adult plants were grown in soils contaminated with either sodium chloride or potassium chloride at various concentrations, then manually washed to collect the excreted salts. Atriplex canescens which has salt bladders, was found to have negligible excretions, suggesting that these structures release minimal amounts of salt onto the leaf's surface. Chloride excretions of S. pectinata and D. spicata increased with higher soil chloride concentrations. A. maritima showed minimal excretion until a threshold soil salinity was reached. This species shifted from a reliance on internal sequestration to secretion at higher soil salinity. The salt used in the media did not impact these trends, but D. spicata excreted significantly more chloride under sodium chloride conditions. While all four species studied were able to translocate significant amount of salt to their shoots, only S. pectinata, D. spicata, and A. maritima are suitable candidates for remediation by haloconduction. Among these, A. maritima showed the greatest potential and significantly reduced the soil chloride concentration by up to 60% in the highest concentration treatment (4 mg/g).HIGHLIGHTSArmeria maritima, Spartina pectinata, and Distichlis spicata are suitable species for remediation via haloconduction.Armeria maritima had the highest total extraction capacity at high soil chloride.Spartina pectinata had the most consistent excretion capacity and is the most suitable for remediation of soils with lower soil chloride.


Assuntos
Atriplex , Solo , Biodegradação Ambiental , Canadá , Cloreto de Sódio
8.
Sci Total Environ ; 698: 134235, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783465

RESUMO

At low concentrations salts are relatively benign, but anthropogenic activities can drive concentrations to levels that impact soil quality, microbial, plant, and animal life. Soil and freshwater salinization are growing issues worldwide that are difficult to manage with conventional treatments. In this review, salt tolerant plants known as halophytes are evaluated for their potential to phytoremediate salinized soils and prevent leaching of salts into surface and ground water. While most plants are sensitive to high concentrations of salt in their growth media, halophytic plants have developed mechanisms to tolerate and thrive in these environments. Some plants exclude salts at the roots, others sequester salts in their central vacuole, while others secrete salts through specialized salt glands on their leaf surfaces. The extraction of salts from soil by both plants that sequester or secrete salts are reviewed as well as implementation strategies that could drive economic feasibility. Further, phytoremediation of salinized soils is considered in the context of a changing climate.


Assuntos
Recuperação e Remediação Ambiental/métodos , Salinidade , Plantas Tolerantes a Sal , Poluentes do Solo , Solo/química , Biodegradação Ambiental , Mudança Climática , Planeta Terra , Água Doce , Folhas de Planta , Raízes de Plantas
9.
Sci Total Environ ; 685: 827-835, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242461

RESUMO

Recretohalophytes employ specialized glands to excrete salt ions onto their tissue surfaces, which then have the potential to be transported away from the plant via wind in a process referred to as 'haloconduction'. Spartina pectinata and Distichlis spicata were selected to investigate the potential to remediate a cement kiln dust landfill in Bath, ON via salt excretion and haloconduction. Under ideal conditions in the laboratory, measurements of salt excreted by large (>15 shoots and > 50 cm height) plants of each species were 280 ±â€¯164 g/m2 and 164 ±â€¯75 g/m2, respectively, resulting in potential remediation timeframes of 1.4 ±â€¯0.9 and 2.4 ±â€¯1.1 years. Three salt collection methods were developed and installed in the field to test their efficacy for capturing and measuring windborne salt mobilized from plant surfaces. All three methods (two ground-level and one at 260 cm height) were successful in capturing and quantifying airborne salts up to 15 m from the plots. This study is the first to collect and quantify dispersed salt from recretohalophytes and hence confirm the theory of haloconduction, a promising new remediation technology for salt-impacted soils.


Assuntos
Biodegradação Ambiental , Poaceae/fisiologia , Plantas Tolerantes a Sal/fisiologia , Poeira , Plantas , Cloreto de Sódio , Solo , Poluentes do Solo , Instalações de Eliminação de Resíduos
10.
Int J Phytoremediation ; 20(6): 523-529, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29688060

RESUMO

Point Pelee National Park (PPNP) is highly contaminated with dichlorodiphenyltrichloroethane (DDT) due to the historical use of this persistent organochlorine pesticide. Hydroxypropyl-ß-cyclodextrin (HPßCD) has previously been investigated for its role in the remediation of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). In the present study, HPßCD's ability to promote DDT microbial degradation, enhance DDT phytoextraction by two native grasses (Schizachyrium scoparium and Panicum virgatum), and increase DDT bioavailability to redworms (Eisenia fetida) was investigated. Using a range of HPßCD concentrations (2.5% to 10%), it was determined that it did not promote DDT microbial degradation in PPNP soils, however, it was able enhance the DDT phytoextraction ability of S. scoparium plants due to the increased water solubility of DDT. Although HPßCD application to PPNP soil did not increase DDT bioavailability to redworms, its enhanced solubility allowed it to move through the soil column, and hence groundwater contamination is a possibility. Due to this important issue, in situ use of HPßCD to remediate DDT contamination is not recommended unless measures are in place to mitigate movement into groundwater.


Assuntos
DDT/análise , Hidrocarbonetos Clorados , 2-Hidroxipropil-beta-Ciclodextrina , Biodegradação Ambiental , Solo
11.
Sci Total Environ ; 572: 1132-1137, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528483

RESUMO

Phragmites australis, Puccinnellia nuttalliana (salt accumulators), and Spartina pectinata (salt excretor) were investigated based on their relative abilities to phytoextract chloride from a cement kiln dust landfill in Bath, ON. Salt tolerance mechanisms were found to affect phytoextraction performance. On the basis of accumulation alone, P. australis had the greatest phytoextraction efficiency compared to the other two species due to its high biomass (despite having the lowest shoot ion concentrations). Conversely, when weekly salt excretion on the leaf surfaces of S. pectinata was accounted for over an eight week period from July to August 2014, removal of Cl- increased by 160% surpassing the extraction ability of P. australis by nearly 60%. Energy dispersive spectroscopy analysis of the excreted salt particles on S. pectinata indicates that they were composed of the plant macronutrient, potassium and micronutrient, chloride. Wind re-distribution of these nutrients may actually have beneficial effects on the environment, as they are required by both plants and animals for various metabolic functions. This is the first study to demonstrate salt excretion for the remediation of an industrially salinized landfill in Canada.


Assuntos
Cloretos/metabolismo , Poaceae/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Biodegradação Ambiental , Ontário , Solo/química , Especificidade da Espécie , Instalações de Eliminação de Resíduos
12.
Chemosphere ; 144: 1428-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26495827

RESUMO

The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 µg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake (<50% variability), but was different from plant root uptake by 134%. A literature review of C. pepo BAFs across DDT soil contamination levels and the inclusion of field data from a 2.5 µg/g DDT-contaminated site found that these plants exhibit a concentration threshold effect at [DDT](soil) > 10 µg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies.


Assuntos
Cucurbita/metabolismo , DDT/farmacocinética , Monitoramento Ambiental/métodos , Oligoquetos/metabolismo , Resinas Sintéticas/química , Poluentes do Solo/farmacocinética , Animais , Disponibilidade Biológica , Carvão Vegetal/química , Inseticidas/farmacocinética
13.
Waste Manag ; 51: 111-118, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26597371

RESUMO

Cement kiln dust (CKD) is a globally produced by-product from cement manufacturing that is stockpiled or landfilled. Elevated concentrations of chloride pose toxic threats to plants and aquatic communities, as the anion is highly mobile in water and can leach into surrounding water sources. Re-vegetation and in situ phytoextraction of chloride from a CKD landfill in Bath, ON, Canada, was investigated with the resident invasive species Phragmites australis (haplotype M). Existing stands of P. australis were transplanted from the perimeter of the site into the highest areas of contamination (5.9×10(3)µg/g). Accumulation in the shoots of P. australis was quantified over one growing season by collecting samples from the site on a bi-weekly basis and analyzing for chloride. Concentrations decreased significantly from early May (24±2.2×10(3)µg/g) until mid-June (15±2.5×10(3)µg/g), and then remained stable from June to August. Shoot chloride accumulation was not significantly affected by water level fluctuations at the site, however elevated potassium concentrations in the soil may have contributed to uptake. Based on shoot chloride accumulation and total biomass, it was determined that phytoextraction from the CKD landfill can remove 65±4kg/km(2) of chloride per season. Based on this extraction rate, removal of chloride present in the highly contaminated top 10cm of soil can be achieved in 3-9years. This is the first study to apply phytotechnologies at a CKD landfill, and to successfully demonstrate in situ phytoextraction of chloride.


Assuntos
Cloretos/metabolismo , Poeira , Recuperação e Remediação Ambiental/métodos , Poaceae/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Indústria da Construção , Ontário , Brotos de Planta/metabolismo
14.
J Environ Qual ; 44(4): 1201-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26437101

RESUMO

A field investigation was conducted at three dichlorodiphenyltrichloroethane (DDT)-contaminated areas in Point Pelee National Park (PPNP), Leamington, ON. cultivar Howden and three native grass species, (Michx.) Nash (little bluestem), L. (switchgrass), and (Torr.) A. Gray (sand dropseed) were grown at three different sites in the PPNP having low (291 ng/g), moderate (5083 ng/g), and high (10,192 ng/g) soil DDT contamination levels. A threshold soil DDT concentration was identified at ∼5000 ng/g where the DDT uptake into was maximized, resulting in plant shoot and root DDT concentrations of 16,600 and 45,000 ng/g, respectively. Two native grass species ( and ) were identified as potential phytoextractors, with higher shoot extraction capabilities than that of the known phytoextractor when optimal planting density was taken into account.

15.
Int J Phytoremediation ; 17(11): 1137-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848836

RESUMO

Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 µg·g(-1)), and soil from the site containing low (5.0 ± 0.3 µg·g(-1) Cd), and high (16.5 ± 1.2 µg⋅g(-1) Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.


Assuntos
Cádmio/metabolismo , Magnoliopsida/metabolismo , Esgotos/análise , Poluentes do Solo/metabolismo , Resíduos Sólidos/análise , Biodegradação Ambiental , Disponibilidade Biológica , Ontário , Especificidade da Espécie
16.
J Vis Exp ; (93): e52183, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25489663

RESUMO

The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.


Assuntos
Carvão Vegetal/química , Poluentes Ambientais/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Solo/química , Controle de Qualidade
17.
Environ Pollut ; 182: 201-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933124

RESUMO

The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Bifenilos Policlorados/química , Poluentes do Solo/química , Animais , Biodegradação Ambiental , Oligoquetos/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
18.
Sci Total Environ ; 461-462: 81-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23712118

RESUMO

Saglek Bay (LAB-2), located on the northeast coast of Labrador is a former Polevault station that was operated by the U.S. Air Force from 1953 to 1971 when it was abandoned. An environmental assessment carried out in 1996 determined that the site was contaminated with polychlorinated biphenyls (PCBs) with concentrations in soils far exceeding the Canadian Environmental Protection Agency (CEPA) regulation of 50 µg/g in three areas of the site (Beach, Site Summit, Antenna Hill). This led to remediation work carried out between 1999 and 2004 to remove and/or isolate all PCB-contaminated soil exceeding 50 µg/g and to further remediate parts of the site to <5 µg/g PCBs. In this study, spatial and temporal trends of PCB concentrations in soil, vegetation (Betula glandulosa and Salix spp.), and deer mice (Peromyscus maniculatus) were investigated over a period of fourteen (1997-2011) years in an effort to track ecosystem recovery following the removal of the PCB point sources. The data collected shows that PCB levels in vegetation samples are approximately four times lower in 2011 than pre-remediation in 1997. Similarly, PCB concentrations in deer mice in 2011 are approximately three times lower than those measured in 1997/98. Spatial trends in vegetation and deer mice continue to demonstrate that areas close to the former point sources of PCBs have higher PCB concentrations than those further away (and higher than background levels) and these residual PCB levels are not likely to decrease in the foreseeable future given the persistent nature of PCBs in general in the environment, and in particular in cold climates.


Assuntos
Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Poluentes Ambientais/farmacocinética , Recuperação e Remediação Ambiental/métodos , Bifenilos Policlorados/farmacocinética , Animais , Arocloros , Betula/metabolismo , Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Terra Nova e Labrador , Peromyscus/metabolismo , Bifenilos Policlorados/toxicidade , Radar , Salix/metabolismo
19.
Sci Total Environ ; 445-446: 314-20, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23348720

RESUMO

Concentrations of polychlorinated biphenyls (PCBs) were measured in the new-year growth of dwarf birch (Betula glandulosa) before (2001-2002), during (2003-2004), and for six years after (2005-2010) the screening and containerization of PCB-contaminated soils (>50 µg/g PCBs) at a remote Arctic radar site. During the remediation activities, ambient air PCB concentrations were measured using active air samplers for comparison to the passive samplers (dwarf birch). PCB concentrations measured by the active samplers reached a maximum of 0.037 µg/m(3) which was below the project criteria of 0.15 µg/m(3) indicating minimal source emissions. During the same time period, PCB concentrations in the dwarf birch (passive samplers) showed significant increases of 2-14 fold compared to the baseline data from previous years. The birch data also showed significant changes between monitoring events within the 2003 and 2004 sampling seasons (June to September) and decreases when ambient air concentrations were low, indicating the sensitivity of new-year growth to reflect net accumulation and ambient conditions at a temporal scale of approximately two weeks. The dwarf birch PCB concentrations remained elevated compared to baseline levels for two years after the remediation was completed. In the third year following remediation, concentrations decreased to below baseline levels reflecting the overall remediation and source removal at the site. Spatial variations observed in dwarf birch PCB concentrations are likely due to the influence of wind direction on contaminant dispersal and deposition.


Assuntos
Poluentes Atmosféricos/análise , Betula/metabolismo , Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Poluentes Atmosféricos/metabolismo , Regiões Árticas , Betula/crescimento & desenvolvimento , Recuperação e Remediação Ambiental , Bifenilos Policlorados/metabolismo , Solo/química
20.
Sci Total Environ ; 437: 76-82, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22922132

RESUMO

Biochar is a carbon rich by-product produced from the thermal decomposition of organic matter under low oxygen concentrations. Currently many researchers are studying the ability of biochar to improve soil quality and function in agricultural soils while sustainably sequestering carbon. This paper focuses on a novel but complimentary application of biochar - the reduced bioavailability and phytoavailability of organic contaminants in soil, specifically polychlorinated biphenyls (PCBs). In this greenhouse experiment, the addition of 2.8% (by weight) biochar to soil contaminated with 136 and 3.1 µg/g PCBs, reduced PCB root concentration in the known phytoextractor Cucurbita pepo ssp. pepo by 77% and 58%, respectively. At 11.1% biochar, even greater reductions of 89% and 83% were recorded, while shoot reductions of 22% and 54% were observed. PCB concentrations in Eisenia fetida tissue were reduced by 52% and 88% at 2.8% and 11.1% biochar, respectively. In addition, biochar amended to industrial PCB-contaminated soil increased both aboveground plant biomass, and worm survival rates. Thus, biochar has significant potential to serve as a mechanism to decrease the bioavailability of organic contaminants (e.g. PCBs) in soil, reducing the risk these chemicals pose to environmental and human health, and at the same time improve soil quality and decrease CO(2) emissions.


Assuntos
Carvão Vegetal/química , Cucurbita/metabolismo , Oligoquetos/metabolismo , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Gerenciamento de Resíduos/métodos , Animais , Disponibilidade Biológica , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Bifenilos Policlorados/química , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...