Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725254

RESUMO

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Assuntos
Plantas/genética , Altitude , Chile , Mudança Climática , Clima Desértico , Ecossistema , Genômica/métodos , Filogenia , Solo , Microbiologia do Solo
2.
Curr Biol ; 27(19): 2928-2939.e6, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28943090

RESUMO

Asexual reproduction in animals, though rare, is the main or exclusive mode of reproduction in some long-lived lineages. The longevity of asexual clades may be correlated with the maintenance of heterozygosity by mechanisms that rearrange genomes and reduce recombination. Asexual species thus provide an opportunity to gain insight into the relationship between molecular changes, genome architecture, and cellular processes. Here we report the genome sequence of the parthenogenetic nematode Diploscapter pachys with only one chromosome pair. We show that this unichromosomal architecture is shared by a long-lived clade of asexual nematodes closely related to the genetic model organism Caenorhabditis elegans. Analysis of the genome assembly reveals that the unitary chromosome arose through fusion of six ancestral chromosomes, with extensive rearrangement among neighboring regions. Typical nematode telomeres and telomeric protection-encoding genes are lacking. Most regions show significant heterozygosity; homozygosity is largely concentrated to one region and attributed to gene conversion. Cell-biological and molecular evidence is consistent with the absence of key features of meiosis I, including synapsis and recombination. We propose that D. pachys preserves heterozygosity and produces diploid embryos without fertilization through a truncated meiosis. As a prelude to functional studies, we demonstrate that D. pachys is amenable to experimental manipulation by RNA interference.


Assuntos
Evolução Molecular , Genoma Helmíntico , Reprodução Assexuada , Rhabditoidea/genética , Animais , Sequenciamento Completo do Genoma
3.
Science ; 329(5990): 432-5, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20522740

RESUMO

Three-prime untranslated regions (3'UTRs) of metazoan messenger RNAs (mRNAs) contain numerous regulatory elements, yet remain largely uncharacterized. Using polyA capture, 3' rapid amplification of complementary DNA (cDNA) ends, full-length cDNAs, and RNA-seq, we defined approximately 26,000 distinct 3'UTRs in Caenorhabditis elegans for approximately 85% of the 18,328 experimentally supported protein-coding genes and revised approximately 40% of gene models. Alternative 3'UTR isoforms are frequent, often differentially expressed during development. Average 3'UTR length decreases with animal age. Surprisingly, no polyadenylation signal (PAS) was detected for 13% of polyadenylation sites, predominantly among shorter alternative isoforms. Trans-spliced (versus non-trans-spliced) mRNAs possess longer 3'UTRs and frequently contain no PAS or variant PAS. We identified conserved 3'UTR motifs, isoform-specific predicted microRNA target sites, and polyadenylation of most histone genes. Our data reveal a rich complexity of 3'UTRs, both genome-wide and throughout development.


Assuntos
Regiões 3' não Traduzidas , Caenorhabditis elegans/genética , Genes de Helmintos , RNA de Helmintos/genética , Animais , Sítios de Ligação , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Biologia Computacional , Sequência Conservada , Transtornos do Desenvolvimento Sexual , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Proteínas de Helminto/genética , Histonas/genética , Masculino , MicroRNAs/metabolismo , Óperon , Poli A/metabolismo , Poliadenilação , RNA Mensageiro/genética , Trans-Splicing
4.
Nucleic Acids Res ; 36(Database issue): D57-62, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17986455

RESUMO

Three-prime untranslated regions (3'UTRs) are widely recognized as important post-transcriptional regulatory regions of mRNAs. RNA-binding proteins and small non-coding RNAs such as microRNAs (miRNAs) bind to functional elements within 3'UTRs to influence mRNA stability, translation and localization. These interactions play many important roles in development, metabolism and disease. However, even in the most well-annotated metazoan genomes, 3'UTRs and their functional elements are not well defined. Comprehensive and accurate genome-wide annotation of 3'UTRs and their functional elements is thus critical. We have developed an open-access database, available at http://www.UTRome.org, to provide a rich and comprehensive resource for 3'UTR biology in the well-characterized, experimentally tractable model system Caenorhabditis elegans. UTRome.org combines data from public repositories and a large-scale effort we are undertaking to characterize 3'UTRs and their functional elements in C. elegans, including 3'UTR sequences, graphical displays, predicted and validated functional elements, secondary structure predictions and detailed data from our cloning pipeline. UTRome.org will grow substantially over time to encompass individual 3'UTR isoforms for the majority of genes, new and revised functional elements, and in vivo data on 3'UTR function as they become available. The UTRome database thus represents a powerful tool to better understand the biology of 3'UTRs.


Assuntos
Regiões 3' não Traduzidas/química , Caenorhabditis elegans/genética , Bases de Dados de Ácidos Nucleicos , Animais , Internet , Software , Interface Usuário-Computador
5.
Genome Res ; 15(2): 250-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15687288

RESUMO

Several RNA interference (RNAi)-based functional genomic projects have been performed in Caenorhabditis elegans to identify genes required during embryogenesis. These studies have demonstrated that the ovary is enriched for transcripts essential for the first cell divisions. However, comparing RNAi results suggests that many genes involved in embryogenesis have yet to be identified, especially those eliciting partially penetrant phenotypes. To discover additional genes required for C. elegans embryonic development, we tested by RNAi 1123 ORFeome clones selected to represent ovary-enriched genes not associated with an embryonic phenotype. We discovered 155 new ovary-enriched genes with roles during embryogenesis, of which 69% show partial penetrance lethality. Time-lapse microscopy revealed specific phenotypes during early embryogenesis for genes giving rise to high penetrance lethality. Together with previous studies, we now have evidence that 1843 C. elegans genes have roles in embryogenesis, and that many more remain to be found. Using all available RNAi phenotypic data for the ovary-enriched genes, we re-examined the distribution of genes by chromosomal location, functional class, ovary enrichment, and conservation and found that trends are driven almost exclusively by genes eliciting high-penetrance phenotypes. Furthermore, we discovered a striking direct relationship between phylogenetic distribution and the penetrance level of embryonic lethality elicited by RNAi.


Assuntos
Caenorhabditis elegans/genética , Clonagem Molecular/métodos , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Helmintos/fisiologia , Interferência de RNA/fisiologia , Animais , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica/métodos , Fases de Leitura Aberta/genética , Ovário , Penetrância , Fenótipo , RNA de Cadeia Dupla/genética , RNA de Helmintos/genética , Projetos de Pesquisa
6.
Oncogene ; 22(42): 6497-507, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-14528274

RESUMO

Cancer is a highly variable disease with multiple heterogeneous genetic and epigenetic changes. Functional studies are essential to understanding the complexity and polymorphisms of cancer. The final deciphering of the complete human genome, together with the improvement of high throughput technologies, is causing a fundamental transformation in cancer research. Microarray is a new powerful tool for studying the molecular basis of interactions on a scale that is impossible using conventional analysis. This technique makes it possible to examine the expression of thousands of genes simultaneously. This technology promises to lead to improvements in developing rational approaches to therapy as well as to improvements in cancer diagnosis and prognosis, assuring its entry into clinical practice in specialist centers and hospitals within the next few years. Predicting who will develop cancer and how this disease will behave and respond to therapy after diagnosis will be one of the potential benefits of this technology within the next decade. In this review, we highlight some of the recent developments and results in microarray technology in cancer research, discuss potentially problematic areas associated with it, describe the eventual use of microarray technology for clinical applications and comment on future trends and issues.


Assuntos
Mutação/genética , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Neoplasias Bucais/genética , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias Ovarianas/genética , Prognóstico , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...