Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(16): 4432-4437, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28319344

RESUMO

Columnar supramolecular phases with polarization along the columnar axis have potential for the development of ultrahigh-density memories as every single column might function as a memory element. By investigating structure and disorder for four columnar benzene-1,3,5-trisamides by total X-ray scattering and DFT calculations, we demonstrate that the column orientation, and thus the columnar dipole moment, is receptive to geometric frustration if the columns aggregate in a hexagonal rod packing. The frustration suppresses conventional antiferroelectric order and heightens the sensitivity towards collective intercolumnar packing effects. The latter finding allows for the building up of mesoscale domains with spontaneous polarization. Our results suggest how the complex interplay between steric and electrostatic interactions is influenced by a straightforward chemical design of the molecular synthons to create spontaneous polarization and to adjust mesoscale domain size.

2.
Solid State Nucl Magn Reson ; 65: 122-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25572924

RESUMO

We study the efficiency of two symmetry based homonuclear (19)F double-quantum recoupling sequences for moderate (R142(6)) and ultra-fast (R144(5)) MAS under the influence of strong (1)H-(1)H and (1)H-(19)F dipolar interactions and (1)H continuous wave decoupling. Simulations based on various spin systems derived from the organic solid 1,3,5-tris(2-fluoro-2-methylpropionylamino)benzene (F-BTA), used as a model system, reveal that the strong-decoupling limit is not accessible even for moderate spinning speeds. Additionally, for the no-decoupling limit improved DQ efficiencies are predicted for both moderate and ultra-fast MAS. Strong perturbations of build-up curves can be avoided by additional stabilisation through supercycling. Additional (1)H cw decoupling during (19)F recoupling rapidly reduces the maximum DQ efficiency when deviating from the no-decoupling limit. These effects were confirmed by experimental data on F-BTA. For moderate spinning the influence of (1)H-(1)H and (1)H-(19)F couplings is markedly stronger compared to ultra-fast MAS. For the latter case those influences reduce to a constant scaling if only short excitation times up to the first minimum are taken into account. Based on this analysis the experimental build-up curves of 1,3,5-tris(2-fluoro-2-methylpropionylamino)benzene can be refined with homonuclear (19)F spin systems which allow to probe even subtle structural differences for the fluorine atoms of F-BTA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...