Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213927, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917649

RESUMO

Metals are widely utilized as implant materials for bone fixtures as well as stents. Biodegradable versions of these implants are highly desirable since patients do not have to undergo a second surgery for the materials to be removed. Attractive options for such materials are zinc silver alloys since they also offer the benefit of being antibacterial. However, it is important to investigate the effect of the degradation products of such alloys on the surrounding cells, taking into account silver cytotoxicity. Here we investigated zinc alloyed with 1 % of silver (Zn1Ag) and how differently concentrated extracts (1 %-100 %) of this material impact human umbilical vein endothelial cells (HUVECs). More specifically, we focused on free radical generation and oxidative stress as well as the impact on cell viability. To determine free radical production we used diamond-based quantum sensing as well as conventional fluorescent assays. The viability was assessed by observing cell morphology and the metabolic activity via the MTT assay. We found that 1 % and 10 % extracts are well tolerated by the cells. However, at higher extract concentrations we observed severe impact on cell viability and oxidative stress. We were also able to show that quantum sensing was able to detect significant free radical generation even at the lowest tested concentrations.


Assuntos
Ligas , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Nanodiamantes , Estresse Oxidativo , Zinco , Humanos , Ligas/química , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nanodiamantes/química , Prata/toxicidade , Prata/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Radicais Livres/metabolismo , Teste de Materiais/métodos , Implantes Absorvíveis/efeitos adversos
2.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770265

RESUMO

The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on the structural properties of the two iron-based metallic glasses Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 have been investigated and compared. While for Fe73.9Cu1Nb3Si15.5B6.6, HPT processing allows us to extend the known consolidation and deformation ranges, HPT processing of Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time ever achieves consolidation and deformation with a minimum number of cracks. Using numerous analyses such as X-ray diffraction, dynamic mechanical analyses, and differential scanning calorimetry, as well as optical and transmission electron microscopy, clearly reveals that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibits HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 does not crystallize even at the highest HPT-deformation degrees applied. The reasons for these findings are discussed in terms of differences in the deformation energies expended, and the number and composition of the individual crystalline phases formed. The results appear promising for obtaining improved magnetic properties of glassy alloys without additional thermal treatment.

3.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771925

RESUMO

In this study, several biodegradable Mg alloys (Mg5Zn, Mg5Zn0.3Ca, Mg5Zn0.15Ca, and Mg5Zn0.15Ca0.15Zr, numbers in wt%) were investigated after thermomechanical processing via high-pressure torsion (HPT) at elevated temperature as well as after additional heat treatments. Indirect and direct analyses of microstructure revealed that the significant strength increases arise not only from dislocations and precipitates but also from vacancy agglomerates. By contrast with former low-temperature processing routes applied by the authors, a significant ductility was obtained because of temperature-induced dynamic recovery. The low initial values of Young's modulus were not significantly affected by warm HPT-processing. nor by heat treatments afterwards. Also, corrosion resistance did not change or even increase during those treatments. Altogether, the study reveals a viable processing route for the optimization of Mg alloys to provide enhanced mechanical properties while leaving the corrosion properties unaffected, suggesting it for the use as biodegradable implant material.

4.
Materials (Basel) ; 13(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276432

RESUMO

Two binary biodegradable Mg-alloys and one ternary biodegradable Mg-alloy (Mg-0.3Ca, Mg-5Zn and Mg-5Zn-0.3Ca, all in wt%) were investigated. Surface-sensitive X-ray photoelectron spectroscopy analyses (XPS) of the alloy surfaces before and after immersion in simulated body fluid (SBF) were performed. The XPS analysis of the samples before the immersion in SBF revealed that the top layer of the alloy might have a non-homogeneous composition relative to the bulk. Degradation during the SBF immersion testing was monitored by measuring the evolution of H2. It was possible to evaluate the thickness of the sample degradation layers after the SBF immersion based on scanning electron microscopy (SEM) of the tilted sample. The thickness was in the order of 10-100 µm. The typical bio-corrosion products of all of the investigated alloys consisted of Mg, Ca, P and O, which suggests the formation of apatite (calcium phosphate hydroxide), magnesium hydrogen phosphate hydrate and magnesium hydroxide. The bioapplicability of the analyzed alloys with regard to surface composition and degradation kinetics is discussed.

5.
Materials (Basel) ; 12(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382378

RESUMO

In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 Tm led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.

6.
Nat Commun ; 8(1): 1429, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127330

RESUMO

Ti-alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10-6 to -95.1×10-6 °C-1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and ß-stabilized Ti-alloys in general.

7.
J Mech Behav Biomed Mater ; 62: 93-105, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179768

RESUMO

Biocompatible ß Ti-45Nb (wt%) alloys were subjected to different methods of severe plastic deformation (SPD) in order to increase the mechanical strength without increasing the low Young׳s modulus thus avoiding the stress shielding effect. The mechanical properties, microstructural changes and texture evolution were investigated, by means of tensile, microhardness and nanoindentation tests, as well as TEM and XRD. Significant increases of hardness and ultimate tensile strength up to a factor 1.6 and 2, respectively, could be achieved depending on the SPD method applied (hydrostatic extrusion - HE, high pressure torsion - HPT, and rolling and folding - R&F), while maintaining the considerable ductility. Due to the high content of ß-stabilizing Nb, the initial lattice structure turned out to be stable upon all of the SPD methods applied. This explains why with all SPD methods the apparent Young׳s modulus measured by nanoindentation did not exceed that of the non-processed material. For its variations below that level, they could be quantitatively related to changes in the SPD-induced texture, by means of calculations of the Young׳s modulus on basis of the texture data which were carefully measured for all different SPD techniques and strains. This is especially true for the significant decrease of Young׳s modulus for increasing R&F processing which is thus identified as a texture effect. Considering the mechanical biocompatibility (percentage of hardness over Young׳s modulus), a value of 3-4% is achieved with all the SPD routes applied which recommends them for enhancing ß Ti-alloys for biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Módulo de Elasticidade , Nióbio , Resistência à Tração , Titânio
8.
Phys Chem Chem Phys ; 17(5): 3715-22, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25556702

RESUMO

The best p-type skutterudites with ZT > 1.1 so far are didymium (DD) filled, Fe/Co substituted, Sb-based skutterudites. DD0.68Fe3CoSb12 was prepared using an annealing-reacting-melting-quenching technique followed by ball milling and hot pressing. After severe plastic deformation via high-pressure torsion (HPT), no phase changes but particular structural variations were achieved, leading to modified transport properties with higher ZT values. Although after measurement-induced heating some of the HPT induced defects were annealed out, a still attractive ZT-value was preserved. In this paper we focus on explanations for these changes via TEM investigations, Raman spectroscopy and texture measurements. The grain sizes and dislocation densities, evaluated from TEM images, showed that (i) the majority of cracks generated during high-pressure torsion are healed during annealing, leaving only small pores, that (ii) the grains have grown, and that (iii) the dislocation density is decreased. While Raman spectra indicate that after HPT processing and annealing the vibration modes related to the shorter Sb-Sb bonds in the Sb4 rings are more affected than those related to the longer Sb-Sb bonds, almost no visible changes were observed in the pole intensity and/or orientation.

9.
Acta Mater ; 68(100): 189-195, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24748848

RESUMO

The release of excess volume upon recrystallization of ultrafine-grained Cu deformed by high-pressure torsion (HPT) was studied by means of the direct technique of high-precision difference dilatometry in combination with differential scanning calorimetry (DSC) and scanning electron microscopy. From the length change associated with the removal of grain boundaries in the wake of crystallite growth, a structural key quantity of grain boundaries, the grain boundary excess volume or expansion [Formula: see text] m was directly determined. The value is quite similar to that measured by dilatometry for grain boundaries in HPT-deformed Ni. Activation energies for crystallite growth of [Formula: see text] and [Formula: see text] are derived by Kissinger analysis from dilatometry and DSC data, respectively. In contrast to Ni, substantial length change proceeds in Cu at elevated temperatures beyond the regime of dominant crystallite growth. In the light of recent findings from tracer diffusion and permeation experiments, this is associated with the shrinkage of nanovoids at high temperatures.

10.
Sci Technol Adv Mater ; 14(5): 055004, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877611

RESUMO

Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α' and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a [Formula: see text] transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to ß0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase ß domain α precipitates and only very limited amounts of α″ martensite form.

11.
Phys Rev Lett ; 108(5): 055504, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400941

RESUMO

The grain boundary excess volume, i.e., the grain boundary expansion, e{GB}, was experimentally determined for high-angle grain boundaries in nickel using the direct technique of high-precision difference dilatometry. Values of e{GB}=(0.35±0.04)×10{-10} m and e{GB}=(0.32±0.04)×10{-10} m were obtained by measuring the removal of grain boundary volume upon grain growth for two different types of ultrafine-grained samples. The results are discussed in comparison to values obtained so far from indirect techniques and from computer simulations. It demonstrates the strength of the presented novel, direct approach for grain boundary expansion measurements.

12.
Phys Rev Lett ; 105(14): 146101, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230846

RESUMO

A high-intensity positron beam is used for specific in situ monitoring of thermally activated fast defect annealing in Cu and Ni on a time scale of minutes. The atomistic technique of positron-electron annihilation is combined with macroscopic high-precision length-change measurements under the same thermal conditions. The combination of these two methods as demonstrated in this case study allows for a detailed analysis of multistage defect annealing in solids distinguishing vacancies, dislocations, and grain growth.

13.
Scr Mater ; 63(4): 452-455, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21785571

RESUMO

A maximum excess volume ΔV/V ≈ 1.9 × 10(-3) in ultrafine-grained Fe prepared by high-pressure torsion is determined by measurements of the irreversible length change upon annealing employing a high-resolution differential dilatometer. Since dislocations and equilibrium-type grain boundaries cannot fully account for the observed released excess volume, the present study yields evidence for a high concentration of free volume-type defects inherent to nanophase materials, which is considered to be the main source of their particular properties, such as strongly enhanced diffusivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...