Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Dosim ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849262

RESUMO

Bolus electron conformal therapy (BECT) in the treatment of cancers of the head and neck is often limited by an inability to reduce dosimetric hot spots resulting from surface irregularity or tissue heterogeneity. We examined the potential benefits of using intensity modulation for electron therapy (IM-BECT) to reduce hotspots in patients undergoing electron beam therapy for superficial cancers of the head and neck (HN). Twenty patients with HN cancer previously treated with BECT were identified. Each case included the treatment targets and a primary organ at risk (OAR) that were defined by the radiation oncologist. A target +2 cm rind structure was created for analysis of the dose deposition in areas surrounding the target volume as a measure of conformality. Each patient plan was transferred into the novel IM-BECT planning software and each case was recomputed as per the original parameters. Next, each case was replanned with the inclusion of intensity modulation, as well as a new custom conformal bolus that was redesigned for optimized range compensation when paired with an intensity modulator. The plans were then normalized to prescription dose and compared for target coverage/dose and OAR dose. For patients who had a hotspot of 125% or greater, the hotspot was on average reduced by 13.1% with IM-BECT. For IM-BECT, the average primary OAR means dose and target+2cm rind mean dose increased slightly by 10.6% and 6.4%, respectively (primary OAR mean [p = 0.0001], and Target+2cm rind mean [p = 0.0001], paired t-test). IM-BECT is an effective method of reducing hotspots in patients with superficial HN cancer. Improvements came at the expense of slight increases in dose to the underlying tissues. This retrospective planning study represents the first example of IM-BECT to actual HN patient cases. Expanding the role of IM-BECT in other disease sites could potentially compared to conventional BECT.

2.
Int J Part Ther ; 10(2): 85-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075486

RESUMO

Purpose: Many patients with metastatic cancer live years beyond diagnosis, and there remains a need to improve the therapeutic ratio of metastasis-directed radiation for these patients. This study aimed to assess a process for delivering cost-effective palliative proton therapy to the spine using diagnostic scan-based planning (DSBP) and prefabricated treatment delivery devices. Materials and Methods: We designed and characterized a reusable proton aperture system that adjusts to multiple lengths for spine treatment. Next, we retrospectively identified 10 patients scan treated with thoracic proton therapy who also had a diagnostic computed tomography within 4 months of simulation. We contoured a T6-T9 target volume on both the diagnostic scans (DS) and simulation scans (SS). Using the aperture system, we generated proton plans on the DS using a posterior-anterior beam with no custom range compensator to treat T6-T9 to 8 Gy × 1. Plans were transferred to the SS to compare coverage and normal tissue doses, followed by robustness analysis. Finally, we compared normal tissue doses and costs between proton and photon plans. Results were compared using the Wilcoxon signed-rank test. Results: Median D95% on the DS plans was 101% (range, 100%-102%) of the prescription dose. Median Dmax was 107% (range, 105%-108%). When transferred to SS, coverage and hot spots remained acceptable for all cases. Heart and esophagus doses did not vary between the DS and SS proton plans (P >.2). Robustness analysis with 5 mm X/Y/Z shifts showed acceptable coverage (D95% > 98%) for all cases. Compared with the proton plans, the mean heart dose was higher for both anterior-posterior/posterior-anterior and volumetric modulated arc therapy plans (P < .01). Cost for proton DSBP was comparable to more commonly used photon regimens. Conclusion: Proton DSBP is technically feasible and robust, with superior sparing of the heart compared with photons. Eliminating simulation and custom devices increases the value of this approach in carefully selected patients.

3.
Int J Part Ther ; 9(2): 10-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060418

RESUMO

Purpose: We present an analysis of various operational metrics for a novel compact proton therapy system, including clinical case mix, subsystems utilization, and quality assurance trends in beam delivery parameters over a period of 5 years. Materials and Methods: Patient-specific data from a total of 850 patients (25,567 fractions) have been collected and analyzed. The patient mix include a variety of simple, intermediate, and complex cases. Beam-specific delivery parameters for a total of 3585 beams were analyzed. In-room imaging system usage for off-line adaptive purpose is reported. We also report key machine performances metrics based on routine quality assurance in addition to uptime. Results: Our analysis shows that system subcomponents including gantry and patient positioning system have maintained a tight mechanical tolerance over the 5-year period. Various beam parameters were all within acceptable tolerances with no clear trends. Utilization frequency histograms of gantry and patient positioning system show that only a small fraction of all available angles was used for patient deliveries with cardinal angels as the most usable. Similarly, beam-specific metrics, such as range, modulation, and air gaps, were clustered unevenly over the available range indicating that this compact system was more than capable to treat the complex variety of tumors of our patient mix. Conclusion: Our data show that this compact system is versatile, robust, and capable of delivering complex treatments like a large full-gantry system. Utilization data show that a fraction of all subcomponents range of angular motion has been used. Compilation of beam-specific metrics, such as range and modulation, show uneven distributions with specific clustering over the entire usable range. Our findings could be used to further optimize the performance and cost-effectiveness of future compact proton systems.

4.
Int J Part Ther ; 9(1): 54-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774494

RESUMO

Purpose: To present quantitative dosimetric evaluations of five proton pencil beam spot placement techniques. Materials and Methods: The spot placement techniques that were investigated include two grid-based (rectilinear grid and hexagonal grid, both commonly available in commercial planning systems) and three boundary-contoured (concentric contours, hybrid, and optimized) techniques. Treatment plans were created for two different target volumes, one spherical and one conical. An optimal set of planning parameters was defined for all treatment plans and the impact of spot placement techniques on the plan quality was evaluated in terms of lateral/distal dose falloff, normal tissue sparing, conformity and homogeneity of dose distributions, as well as total number of spots used. Results: The results of this work highlight that for grid-based spot placement techniques, the dose conformity is dependent on target cross-sectional shape perpendicular to beam direction, which changes for each energy layer. This variable conformity problem is mitigated by using boundary contoured spot placement techniques. However, in the case of concentric contours, the conformity is improved but at the cost of decreased homogeneity inside the target. Hybrid and optimized spot placement techniques, which use contoured spots at the boundary and gridlike interior spot patterns, provide more uniform dose distributions inside the target volume while maintaining the improved dose conformity. The optimized spot placement technique improved target coverage, homogeneity of dose, and minimal number of spots. The dependence of these results on spot size is also presented for both target shapes. Conclusion: This work illustrates that boundary-contoured spot placement techniques offer marked improvement in dosimetry metrics when compared to commercially available grid-based techniques for a range of proton scanned beam spot sizes.

5.
JCO Oncol Pract ; 17(12): e1943-e1948, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170747

RESUMO

PURPOSE: An episode-based payment model, the Radiation Oncology Alternative Payment Model (RO-APM), has been proposed for Medicare reimbursement of radiation services provided to oncology patients. RO-APM may have significant impact on reimbursement for specific patient populations. METHODS: This investigation compares historical fee-for-service technical reimbursement estimates at a large hospital-based system to the RO-APM for advanced radiotherapy treatment of specific cancer types. These advanced techniques, stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), online-adaptive SBRT, and proton therapy, were specifically chosen because they are resource intensive and are correspondingly among the most expensive radiation oncology procedures. A total of 203 Medicare patients were analyzed. RESULTS: RO-APM base-rate reimbursements were similar for SRS and were 38%-47% higher for SBRT. The proposed rates were 1%-31% lower for online-adaptive SBRT, and 48%-71% lower for proton therapy. CONCLUSION: These data suggest that the RO-APM may have the desired effect of encouraging shorter courses of radiotherapy, such as SBRT. However, emerging technologies that require large capital and operating investments may see an overall significant reduction in proposed reimbursement.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia (Especialidade) , Radiocirurgia , Idoso , Humanos , Medicare , Neoplasias/radioterapia , Estados Unidos
6.
J Appl Clin Med Phys ; 18(3): 130-136, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28436155

RESUMO

PURPOSE: The purpose of this study was to characterize the Mobius AIRO Mobile CT System for localization and image-guided proton therapy. This is the first known application of the AIRO for proton therapy. METHODS: Five CT images of a Catphan® 504 phantom were acquired on the AIRO Mobile CT System, Varian EDGE radiosurgery system cone beam CT (CBCT), Philips Brilliance Big Bore 16 slice CT simulator, and Siemens SOMATOM Definition AS 20 slice CT simulator. DoseLAB software v.6.6 was utilized for image quality analysis. Modulation transfer function, scaling discrepancy, geometric distortion, spatial resolution, overall uniformity, minimum uniformity, contrast, high CNR, and maximum HU deviation were acquired. Low CNR was acquired manually using the CTP515 module. Localization accuracy and CT Dose Index were measured and compared to reported values on each imaging device. For treatment delivery systems (Edge and Mevion), the localization accuracy of the 3D imaging systems were compared to 2D imaging systems on each system. RESULTS: The AIRO spatial resolution was 0.21 lp mm-1 compared with 0.40 lp mm-1 for the Philips CT Simulator, 0.37 lp mm-1 for the Edge CBCT, and 0.35 lp mm-1 for the Siemens CT Simulator. AIRO/Siemens and AIRO/Philips differences exceeded 100% for scaling discrepancy (191.2% and 145.8%). The AIRO exhibited higher dose (>27 mGy) than the Philips CT Simulator. Localization accuracy (based on the MIMI phantom) was 0.6° and 0.5 mm. Localization accuracy (based on Stereophan) demonstrated maximum AIRO-kV/kV shift differences of 0.1 mm in the x-direction, 0.1 mm in the y-direction, and 0.2 mm in the z-direction. CONCLUSIONS: The localization accuracy of AIRO was determined to be within 0.6° and 0.5 mm despite its slightly lower image quality overall compared to other CT imaging systems at our institution. Based on our study, the Mobile AIRO CT system can be utilized accurately and reliably for image-guided proton therapy.


Assuntos
Terapia com Prótons/instrumentação , Radiocirurgia/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Terapia com Prótons/métodos , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos
7.
Med Phys ; 41(8): 081714, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086524

RESUMO

PURPOSE: An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. METHODS: The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso was assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. RESULTS: For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ± 30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. CONCLUSIONS: The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.


Assuntos
Imagem Óptica/métodos , Posicionamento do Paciente/instrumentação , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Robótica/métodos , Software , Humanos , Masculino , Imagem Óptica/instrumentação , Posicionamento do Paciente/métodos , Neoplasias da Próstata/radioterapia , Rotação
8.
J Appl Clin Med Phys ; 12(1): 3311, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21330977

RESUMO

We report on our initial experience with daily image guidance for the treatment of a patient with a basal cell carcinoma of the nasal dorsum using bolus electron conformal therapy. We describe our approach to daily alignment using treatment machine-integrated megavoltage (MV) planar imaging in conjunction with cone beam CT (CBCT) volumetric imaging to ensure the best possible setup reproducibility. Based on MV imaging, beam aperture misalignment with the intended treatment region was as large as 0.5 cm in the coronal plane. Four of the five fractions analyzed show induced shifts when compared to digitally reconstructed radiographs (DRR), in the range of 0.2-0.5 cm. Daily inspection of CBCT images show that the bolus device can have significant tilt in any given direction by as much as 13° with respect to beam axis. In addition, we show that CBCT images reveal air gaps between bolus and skin that vary from day to day, and can potentially degrade surface dose coverage. Retrospective dose calculation on CBCT image sets shows that when daily shifts based on MV imaging are not corrected, geometrical miss of the planning target volume (PTV) can cause an underdosing as large as 14% based on DVH analysis of the dose to the 90% of the PTV volume.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Nasais/radioterapia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Algoritmos , Elétrons/uso terapêutico , Humanos , Dosagem Radioterapêutica
9.
Int J Radiat Oncol Biol Phys ; 76(3): 767-74, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19427742

RESUMO

PURPOSE: To compare the geometric alignments of soft-tissue implanted markers to the traditional bony-based alignments in head-and-neck cancers, on the basis of daily image guidance. Dosimetric impact of the two alignment techniques on target coverage is presented. METHODS AND MATERIALS: A total of 330 retrospective alignments (5 patients) were performed on daily megavoltage computed tomography (MVCT) image sets using both alignment techniques. Intermarker distances were tracked for all fractions to assess marker interfractional stability. Using a deformable image registration algorithm, target cumulative doses were calculated according to generated shifts on daily MVCT image sets. Target D95 was used as a dosimetric endpoint to evaluate each alignment technique. RESULTS: Intermarker distances overall were stable, with a standard deviation of <1.5 mm for all fractions and no observed temporal trends. Differences in shift magnitudes between both alignment techniques were found to be statistically significant, with a maximum observed difference of 8 mm in a given direction. Evaluation of technique-specific dose coverage based on D95 of target clinical target volume and planning target volume shows small differences (within +/-5%) compared with the kilovoltage CT plan. CONCLUSION: The use of daily MVCT imaging demonstrates that implanted markers in oral tongue and soft-palate cancers are stable localization surrogates. Alignments based on implanted markers generate shifts comparable overall to the traditional bony-based alignment, with no observed systematic difference in magnitude or direction. The cumulative dosimetric impact on target clinical target volume and planning target volume coverage was found to be similar, despite large observed differences in daily alignment shifts between the two techniques.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Neoplasias Palatinas/diagnóstico por imagem , Próteses e Implantes , Neoplasias da Língua/diagnóstico por imagem , Algoritmos , Carcinoma de Células Escamosas/radioterapia , Fracionamento da Dose de Radiação , Humanos , Movimento , Neoplasias Palatinas/radioterapia , Palato Mole , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias da Língua/radioterapia
10.
Technol Cancer Res Treat ; 8(2): 123-30, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19334793

RESUMO

Initial results of megavoltage computed tomography (MVCT) brachytherapy treatment planning are presented, using a commercially available helical tomotherapy treatment unit and standard low dose rate (LDR) brachytherapy applicators used for treatment of cervical carcinoma. The accuracy of MVCT imaging techniques, and dosimetric accuracy of the CT based plans were tested with in-house and commercially-available phantoms. Three dimensional (3D) dose distributions were computed and compared to the two dimensional (2D) dosimetry results. Minimal doses received by the 2 cm3 of bladder and rectum receiving the highest doses (D(B2cc) and D(R2cc), respectively) were computed from dose-volume histograms and compared to the doses computed for the standard ICRU bladder and rectal reference dose points. Phantom test objects in MVCT image sets were localized with sub-millimetric accuracy, and the accuracy of the MVCT-based dose calculation was verified. Fifteen brachytherapy insertions were also analyzed. The ICRU rectal point dose did not differ significantly from D(R2cc) (p=0.749, mean difference was 24 cGy +/- 283 cGy). The ICRU bladder point dose was significantly lower than the D(B2cc) (p=0.024, mean difference was 291 cGy +/- 444 cGy). The median volumes of bladder and rectum receiving at least the corresponding ICRU reference point dose were 6.1 cm(3) and 2.0 cm(3), respectively. Our initial experience in using MVCT imaging for clinical LDR gynecological brachytherapy indicates that the MVCT images are of sufficient quality for use in 3D, MVCT-based dose planning.


Assuntos
Braquiterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação
11.
Semin Radiat Oncol ; 18(1): 58-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18082589

RESUMO

Prostate motion during external-beam radiotherapy can affect outcomes in patients with localized prostate cancer. Prostate motion and deformation are currently being characterized with different techniques. There is significant individual variation among patients with respect to the observed motion and its dosimetric consequences. There is also significant difference in the accuracy of different localization methods currently used to adjust for prostate motion. The motion of the prostate gland can itself affect the accuracy of different localization methods. The dosimetric impact on target areas and organs at risk should be studied for different localization techniques, treatment plan margins, and treatment schedules. Such assessments will be increasingly important with smaller treatment margins, smaller fraction numbers, and higher radiation doses. Understanding and managing the consequences of anatomic variations within the lower pelvis should be a priority in designing and implementing future clinical trials.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia/métodos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Ultrassonografia
12.
Int J Radiat Oncol Biol Phys ; 70(4): 1151-7, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17892920

RESUMO

PURPOSE: To compare different image-guidance strategies in the alignment of prostate cancer patients. Using data from patients treated using daily image guidance, the remaining setup errors for several different strategies were retrospectively calculated. METHODS AND MATERIALS: The alignment data from 74 patients treated with helical tomotherapy were analyzed, resulting in a data set of 2,252 fractions during which a megavoltage computed tomography image was used for image guidance with intraprostatic metallic fiducials. Given the daily positional adjustments, a variety of protocols, differing in imaging frequency and method, were retrospectively studied. The residual setup errors were determined for each protocol. RESULTS: As expected, the systematic errors were effectively reduced with imaging. However, the random errors were unaffected. Even when image guidance was performed every other day with a running mean of the previous displacements, residual setup errors>5 mm occurred in 24% of all fractions. This frequency increased to about 40% if setup errors>3 mm were scored. CONCLUSION: Setup errors increased with decreasing frequency of image guidance. However, residual errors were still significant at the 5-mm level, even with imaging was performed every other day. This suggests that localizations must be performed daily in the set up of prostate cancer patients during a course of external beam radiotherapy.


Assuntos
Movimento , Próstata , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Fracionamento da Dose de Radiação , Humanos , Masculino , Próteses e Implantes , Estudos Retrospectivos , Carga de Trabalho
13.
Int J Radiat Oncol Biol Phys ; 67(3): 670-7, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17197123

RESUMO

PURPOSE: The aim of this study was to assess the residual setup error of different image-guidance (IG) protocols in the alignment of patients with head and neck cancer. The protocols differ in the percentage of treatment fractions that are associated with image guidance. Using data from patients who were treated with daily IG, the residual setup errors for several different protocols are retrospectively calculated. METHODS AND MATERIALS: Alignment data from 24 patients (802 fractions) treated with daily IG on a helical tomotherapy unit were analyzed. The difference between the daily setup correction and the setup correction that would have been made according to a specific protocol was used to calculate the residual setup errors for each protocol. RESULTS: The different protocols are generally effective in reducing systematic setup errors. Random setup errors are generally not reduced for fractions that are not image guided. As a consequence, if every other treatment is image guided, still about 11% of all treatments (IG and not IG) are subject to three-dimensional setup errors of at least 5 mm. This frequency increases to about 29% if setup errors >3 mm are scored. For various protocols that require 15% to 31% of the treatments to be image guided, from 50% to 60% and from 26% to 31% of all fractions are subject to setup errors >3 mm and >5 mm, respectively. CONCLUSION: Residual setup errors reduce with increasing frequency of IG during the course of external-beam radiotherapy for head-and-neck cancer patients. The inability to reduce random setup errors for fractions that are not image guided results in notable residual setup errors.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Tomografia Computadorizada Espiral/normas
14.
Med Phys ; 33(11): 4064-72, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17153386

RESUMO

We present an evaluation of a new and improved radiochromic film, type EBT, for its implementation to IMRT dose verification. Using a characterized flat bed color CCD scanner, the film's dose sensitivity, uniformity, and speed of development post exposure were shown to be superior to previous types of radiochromic films. The film's dose response was found to be very similar to ion chamber scans in water through comparisons of depth dose and lateral dose profiles. The effect of EBT film polarization with delivered dose and film scan orientation was shown to have a significant effect on the scanner's OD readout. In addition, the film's large size, flexibility, and the ability to submerge it in water for relatively short periods of time allowed for its use in both water and solid water phantoms to verify TomoTherapy IMRT dose distributions in flat and curved dose planes. Dose verification in 2D was performed on ten IMRT plans (five head and neck and five prostate) by comparing measured EBT dose distributions to TomoTherapy treatment planning system calculated dose. The quality of agreement was quantified by the gamma index for four sets of dose difference and distance to agreement criteria. Based on this study, we show that EBT film has several favorable features that allow for its use in routine IMRT patient-specific QA.


Assuntos
Análise de Falha de Equipamento , Dosimetria Fotográfica/instrumentação , Radioterapia Conformacional/métodos , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Dosimetria Fotográfica/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Int J Radiat Oncol Biol Phys ; 66(3): 876-82, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17011460

RESUMO

PURPOSE: The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. METHODS AND MATERIALS: Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). RESULTS: For the entire cohort, the average D95 (+/-SD) was 2.02 +/- 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 (+/-SD) was 7.0 +/- 8.1 cc (range, 0.1-67.3 cc). The average bV2 (+/-SD) was 8.7 +/- 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. CONCLUSION: Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated.


Assuntos
Próstata , Neoplasias da Próstata/radioterapia , Reto , Bexiga Urinária , Humanos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Reto/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Bexiga Urinária/diagnóstico por imagem
16.
Int J Radiat Oncol Biol Phys ; 66(2): 593-6, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16966001

RESUMO

PURPOSE: The aim of this study was to evaluate the extent of the variation in the position of the prostate bed with respect to the bony anatomy. METHODS AND MATERIALS: Four patients were treated to 70 Gy in 35 fractions. Before each fraction, a megavoltage computed tomography (CT) of the prostate bed was obtained, resulting in a total of 140 CT studies. Retrospectively, each CT scan was aligned to the simulation kilovoltage scan based on bony anatomy and the prostate bed. The difference between the 2 alignments was calculated for each scan. RESULTS: The average differences (+/-1 SD) between the two alignments were 0.06+/-0.37, 0.10+/-0.86, and 0.39+/-1.27 mm in the lateral, longitudinal (SI), and vertical (AP) directions, respectively. Laterally, there was no difference>or=3 mm. The cumulative frequency of SI differences were as follows; >or=3 mm: 3%, >or=4 mm: 1%, and >or=5 mm: 1% (maximum: 5 mm). The cumulative frequency of AP differences were as follows; >or=3 mm: 7%, and >or=4 mm: 3% (maximum: 4 mm). CONCLUSION: In patients with prostate cancer receiving postoperative radiotherapy, the prostate bed motion relative to the pelvic bony anatomy is of a relatively small magnitude. Significant motion (>or=3 mm) is infrequent. However, small differences between the prostate bed and the bony anatomy still exist. This might have implications on treatment margins when daily alignment on bony anatomy is performed.


Assuntos
Movimento , Próstata , Neoplasias da Próstata/radioterapia , Humanos , Masculino , Período Pós-Operatório , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Glândulas Seminais , Fatores de Tempo , Tomografia Computadorizada Espiral
17.
Int J Radiat Oncol Biol Phys ; 66(2): 568-75, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16887290

RESUMO

PURPOSE: To report on the initial clinical use of a commercially available system to deliver gated treatment using implanted fiducials, in-room kV X-rays, and an infrared camera tracking system. METHODS AND MATERIALS: ExacTrac Adaptive Gating from BrainLab is a localization system using infrared cameras and X-rays. Gating signals are the patient's breathing pattern obtained from infrared reflectors on the patient. kV X-rays of an implanted fiducial are synchronized to the breathing pattern. After localization and shift of the patient to isocenter, the breathing pattern is used to gate the radiation. Feasibility tests included localization accuracy, radiation output constancy, and dose distributions with gating. Clinical experience is reported on treatment of patients with small lung lesions. RESULTS: Localization accuracy of a moving target with gating was 1.7 mm. Dose constancy measurements showed insignificant change in output with gating. Improvements of dose distributions on moving targets improved with gating. Eleven patients with lung lesions were implanted with 20 mmx0.7 mm gold coil (Visicoil). The implanted fiducial was used to localize and treat the patients with gating. Treatment planning and repeat computed tomographic scans showed that the change in center of gross target volume (GTV) to implanted marker averaged 2.47 mm due in part to asymmetric tumor shrinkage. CONCLUSION: ExacTrac Adaptive Gating has been used to treat lung lesions. Initial system evaluation verified its accuracy and usability. Implanted fiducials are visible in X-rays and did not migrate.


Assuntos
Raios Infravermelhos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento , Respiração , Calibragem , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Neoplasias Pulmonares/diagnóstico , Próteses e Implantes , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
18.
Med Phys ; 31(10): 2730-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15543777

RESUMO

In this study, we compared the dosimetric properties of four of the most commonly used films for megavoltage photon-beam dosimetry when irradiated under identical conditions by small multileaf-collimator (MLC) defined beamlets. Two silver-halide films (SHFs), Kodak XV2 and EDR2, and two radiochromic films (RCFs), Gafchromic HS and MD55-2, were irradiated by MLC-defined 1 x 1 cm2 beamlets from a Varian 2100 C/D linac equipped with a 120-leaf MLC. The beamlets were delivered with the accelerator gantry set laterally (90 degrees rotation) upon a solid-water compression film phantom at 100 cm source-to-surface distance which was positioned with the films parallel to the beam axis. Beamlets were delivered at central axis, 5.0 cm, and 10.5 cm off-axis for both leaf-end and leaf-side defined beamlets. The film dosimetry was performed using a quantitative optical density (OD) imaging system that was validated in a previous study. No significant differences between SHF and RCF measurements were observed in percentage depth doses, horizontal depth profiles, or two-dimension spatial isodose distributions in both the central axis and off-axis measurements. We found that regardless of the type of film used, RCF or SHF, a consistent data set for small beam dose modeling was generated. Previous validation studies based on the use of RCF and OD imaging system would indicate that all film produce an accurate result for small beam characterization.


Assuntos
Análise de Falha de Equipamento/métodos , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Fótons/uso terapêutico , Radioterapia Conformacional/instrumentação , Água/química , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Prata/efeitos da radiação
19.
Med Phys ; 31(6): 1593-602, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15259664

RESUMO

We present a study to evaluate the monitor unit (MU), dosimetric, and leaf-motion errors found in the delivery of 91 step-and-shoot IMRT treatment plans performed at three nominal dose rates using a dual modality high energy Linac (Varian 2100 C/D, Varian Medical Systems Inc., Palo Alto, CA) equipped with a 120-leaf multileaf collimator (MLC). The analysis was performed by studying log files generated by the MLC controller system. Recent studies by our group have validated that the automatically generated MLC log files accurately record the actual system delivery. A total of 635 beams were delivered at three nominal dose rates: 100, 300, and 600 MU/min. The log files were manually retrieved and analysis software was developed to extract the recorded MU delivery and leaf positions for each segment. Our analysis revealed that the magnitude of segment MU errors were independent of the planned segment MUs. Segment MU errors were found to increase with dose rate having maximum errors per segment of +/-1.8 MU at 600 MU/min, +/-0.8 MU at 300 MU/min, and +/-0.5 MU at 100 MU/min. The total absolute MU error in each plan was observed to increase with the number of plan segments, with the trend increasing more rapidly for higher dose rates. Three dimensional dose distributions were recomputed based on the observed segment MU errors for three plans with large cumulative absolute MU errors. Comparison with the original treatment plans indicated no clinically significant consequences due to these errors. In addition, approximately 80% of the total segment deliveries reported at least one collimator leaf moving at least 1 mm (projected at isocenter) during segment delivery. Such errors occur near the end of segment delivery and have been previously observed by our group using a fast video-based electronic portal imaging device. At 600 MU/min, between 5% and 23% of the plan MUs were delivered during leaf motion that had exceeded a 1 mm position tolerance. These leaf motion errors were not included in the treatment plan recalculations performed in this study.


Assuntos
Radioterapia Conformacional/estatística & dados numéricos , Fenômenos Biofísicos , Biofísica , Humanos , Movimento (Física) , Neoplasias/radioterapia , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia Conformacional/normas
20.
Med Phys ; 31(3): 463-76, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15070242

RESUMO

We present an investigation into the use of a fast video-based electronic portal-imaging device (EPID) to study intensity modulated radiation therapy (IMRT) delivery. The aim of this study is to test the feasibility of using an EPID system to independently measure the orchestration of collimator leaf motion and beam fluence; simultaneously measuring both the delivered field fluence and shape as it exits the accelerator head during IMRT delivery. A fast EPID that consists of a terbium-doped gadolinium oxysulphide (GdO2S:Tb) scintillator coupled with an inexpensive commercial 30 frames-per-second (FPS) CCD-video recorder (16.7 ms shutter time) was employed for imaging IMRT delivery. The measurements were performed on a Varian 2100 C/D linear accelerator equipped with a 120-leaf multileaf-collimator (MLC). A characterization of the EPID was performed that included measurements of spatial resolution, linac pulse-rate dependence, linear output response, signal uniformity, and imaging artifacts. The average pixel intensity for fields imaged with the EPID was found to be linear in the delivered monitor units of static non-IMRT fields between 3x3 and 15x15 cm2. A systematic increase of the average pixel intensity was observed with increasing field size, leading to a maximum variation of 8%. Deliveries of a clinical step-and-shoot mode leaf sequence were imaged at 600 MU/min. Measurements from this IMRT delivery were compared with experimentally validated MLC controller log files and were found to agree to within 5%. An analysis of the EPID image data allowed identification of three types of errors: (1) 5 out of 35 segments were undelivered; (2) redistributing all of the delivered segment MUs; and (3) leaf movement during segment delivery. Measurements with the EPID at lower dose rates showed poor agreement with log files due to an aliasing artifact. The study was extended to use a high-speed camera (1-1000 FPS and 10 micros shutter time) with our EPID to image the same delivery to demonstrate the feasibility of imaging without aliasing artifacts. High-speed imaging was shown to be a promising direction toward validating IMRT deliveries with reasonable image resolution and noise.


Assuntos
Microscopia de Vídeo/métodos , Radioterapia Conformacional/métodos , Elétrons , Gadolínio/química , Humanos , Processamento de Imagem Assistida por Computador , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...