Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1874: 43-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30353507

RESUMO

Bacterial Artificial Chromosome (BAC) libraries are a valuable research resource. Any one of the clones in these libraries can carry hundreds of thousands of base pairs of genetic information. Often the entire coding sequence and significant upstream and downstream regions, including regulatory elements, can be found in a single BAC clone. BACs can be put to many uses, such as to study the function of human genes in knockout mice, to drive reporter gene expression in transgenic animals, and for gene discovery. In order to use BACs for experimental purposes it is often desirable to genetically modify them by introducing reporter elements or heterologous cDNA sequences. It is not feasible to use conventional DNA cloning approaches to modify BACs due to their size and complexity, thus a specialized field "recombineering" has developed to modify BAC clones through the use of homologous recombination in bacteria with short homology regions. Genetically engineered BACs can then be used in cell culture, mouse, or rat models to study cancer, neurology, and genetics.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Engenharia Genética/métodos , Recombinação Homóloga , Transgenes , Animais , Animais Geneticamente Modificados , Genes Reporter , Tamanho do Genoma , Genoma Bacteriano , Humanos
2.
FASEB J ; : fj201800479, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906243

RESUMO

Measures of the adipokine chemerin are elevated in multiple cardiovascular diseases, including hypertension, but little mechanistic work has been done to implicate chemerin as being causative in such diseases. The chemerin knockout (KO) rat was created to test the hypothesis that removal of chemerin would reduce pressure in the normal and hypertensive state. Western analyses confirmed loss of chemerin in the plasma and tissues of the KO vs. wild-type (WT) rats. Chemerin concentration in plasma and tissues was lower in WT females than in WT males, as determined by Western analysis. Conscious male and female KO rats had modest differences in baseline measures vs. the WT that included systolic, diastolic, mean arterial and pulse pressures, and heart rate, all measured telemetrically. The mineralocorticoid deoxycorticosterone acetate (DOCA) and salt water, combined with uninephrectomy as a hypertensive stimulus, elevated mean and systolic blood pressures of the male KO higher than the male WT. By contrast, all pressures in the female KO were lower than their WT throughout DOCA-salt treatment. These results revealed an unexpected sex difference in chemerin expression and the ability of chemerin to modify blood pressure in response to a hypertensive challenge.-Watts, S. W., Darios, E. S., Mullick, A. E., Garver, H., Saunders, T. L., Hughes, E. D., Filipiak, W. E., Zeidler, M. G., McMullen, N., Sinal, C. J., Kumar, R. K., Ferland, D. J., Fink, G. D. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension.

3.
Genesis ; 51(11): 785-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23996951

RESUMO

Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it is limited only by the efficiency and specificity of available cre mouse strains. Here, we report the generation of a transgenic line containing a cre cassette with codon usage optimized for mammalian cells (iCre) under the control of a mouse glycoprotein hormone α-subunit (αGSU) regulatory sequences in a bacterial artificial chromosome genomic clone. Initial analysis of this transgenic line, Tg(αGSU-iCre), with cre reporter strains reveals onset of cre activity in the differentiating cells of the developing anterior pituitary gland at embryonic day 12.5, with a pattern characteristic of endogenous αGSU. In adult mice, αGSU-iCre was active in the anterior lobe of the pituitary gland and in the cells that produce αGSU (gonadotropes and thyrotropes) with high penetrance. Little or no activity was observed in other tissues, including skeletal and cardiac muscle, brain, kidney, lungs, testis, ovary, and liver. This αGSU-iCre line is suitable for efficient, specific, and developmentally regulated deletion of floxed alleles in anterior pituitary gonadotropes and thyrotropes.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/genética , Gonadotrofos/metabolismo , Integrases/metabolismo , Recombinação Genética , Tireotrofos/metabolismo , Alelos , Animais , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Embrião de Mamíferos , Feminino , Genótipo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Integrases/genética , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Sequências Reguladoras de Ácido Nucleico
4.
Transgenic Res ; 18(5): 769-85, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19396621

RESUMO

Transgenic mice are widely used in biomedical research to study gene expression, developmental biology, and gene therapy models. Bacterial artificial chromosome (BAC) transgenes direct gene expression at physiological levels with the same developmental timing and expression patterns as endogenous genes in transgenic animal models. We generated 707 transgenic founders from 86 BAC transgenes purified by three different methods. Transgenesis efficiency was the same for all BAC DNA purification methods. Polyamine microinjection buffer was essential for successful integration of intact BAC transgenes. There was no correlation between BAC size and transgenic rate, birth rate, or transgenic efficiency. A narrow DNA concentration range generated the best transgenic efficiency. High DNA concentrations reduced birth rates while very low concentrations resulted in higher birth rates and lower transgenic efficiency. Founders with complete BAC integrations were observed in all 47 BACs for which multiple markers were tested. Additional founders with BAC fragment integrations were observed for 65% of these BACs. Expression data was available for 79 BAC transgenes and expression was observed in transgenic founders from 63 BACs (80%). Consistent and reproducible success in BAC transgenesis required the combination of careful DNA purification, the use of polyamine buffer, and sensitive genotyping assays.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Técnicas de Transferência de Genes , Camundongos Transgênicos/genética , Animais , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Camundongos
5.
J Cell Sci ; 117(Pt 18): 4099-111, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15280425

RESUMO

Neurotrophin receptor alike death domain protein (NRADD) is a death-receptor-like protein with a unique ectodomain and an intracellular domain homologous to p75(NTR). Expression of NRADD results in apoptosis, but only in certain cell types. This paper characterizes the expression and proteolytic processing of the mature 55 kDa glycoprotein. N-terminally truncated NRADD is processed by a gamma-secretase activity that requires presenilins and has the same susceptibility to gamma-secretase inhibitors as the secretion of amyloid beta (A beta). The ectodomain of endogenous NRADD is shed by activation of metalloproteinases. Inhibitor studies provide evidence that NRADD is cleaved in two steps typical of regulated intramembrane proteolysis (RIP). Inhibition of gamma-secretase abrogates both the production of the soluble intracellular domain of NRADD and the appearance of NRADD in subnuclear structures. Thus, solubilized death domains with close homology to p75(NTR) might have a nuclear function. Furthermore, presenilin deficiency leads to abnormally glycosylated NRADD and overexpression of presenilin 2 inhibits NRADD maturation, which is dependent on the putative active site residue D366 but not on gamma-secretase activity. Our results demonstrate that NRADD is an additional gamma-secretase substrate and suggest that drugs against Alzheimer's disease will need to target gamma-secretase in a substrate-specific manner.


Assuntos
Apoptose/fisiologia , Membrana Celular/metabolismo , Endopeptidases/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Fator de Crescimento Neural/genética , Transporte Ativo do Núcleo Celular/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Células CHO , Linhagem Celular , Núcleo Celular/metabolismo , Cricetinae , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Glicosilação , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Peso Molecular , Células NIH 3T3 , Especificidade de Órgãos , Presenilina-2 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína/fisiologia , Receptor de Fator de Crescimento Neural , Receptores de Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...