Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(5): e0072922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036504

RESUMO

Nearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the whole-community transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.) were the major blooming taxa, but dinoflagellates, prasinophytes, and prymnesiophytes also increased. Viral mRNA significantly increased in late bloom and likely played a role in the bloom's demise. We observed conserved shifts in the genetic similarity of phytoplankton populations to cultivated strains, indicating adaptive population-level changes in community composition. Additionally, the density of single nucleotide variants (SNVs) declined in late-bloom samples for most taxa, indicating a loss of intraspecific diversity as a result of competition and a selective sweep of adaptive alleles. We noted differences between mid- and late-bloom metabolism and differential regulation of light-harvesting complexes (LHCs) under nutrient stress. While most LHCs are diminished under nutrient stress, we showed that diverse taxa upregulated specialized, energy-dissipating LHCs in low iron. We also suggest the relative expression of NRT2 compared to the expression of GSII as a marker of cellular nitrogen status and the relative expression of iron starvation-induced protein genes (ISIP1, ISIP2, and ISIP3) compared to the expression of the thiamine biosynthesis gene (thiC) as a marker of iron status in natural diatom communities. IMPORTANCE Iron and nitrogen are the nutrients that most commonly limit phytoplankton growth in the world's oceans. The utilization of these resources by phytoplankton sets the biomass available to marine systems and is of particular interest in high-nutrient, low-chlorophyll (HNLC) coastal fisheries. Previous research has described the biogeography of phytoplankton in HNLC regions and the transcriptional responses of representative taxa to nutrient limitation. However, the differential transcriptional responses of whole phytoplankton communities to iron and nitrogen limitation has not been previously described, nor has the selective pressure that these competitive bloom environments exert on major players. In addition to describing changes in the physiology of diverse phytoplankton, we suggest practical indicators of cellular nitrogen and iron status for future monitoring.


Assuntos
Diatomáceas , Fitoplâncton , Fitoplâncton/genética , Ferro/metabolismo , Nitrogênio/metabolismo , Diatomáceas/genética , Seleção Genética
2.
Sci Rep ; 6: 28428, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329207

RESUMO

In benthic deep-sea ecosystems, which represent the largest biome on Earth, viruses have a recognised key ecological role, but their diversity is still largely unknown. Identifying the taxonomic composition of viruses is crucial for understanding virus-host interactions, their role in food web functioning and evolutionary processes. Here, we compared the performance of various bioinformatic tools (BLAST, MG-RAST, NBC, VMGAP, MetaVir, VIROME) for analysing the viral taxonomic composition in simulated viromes and viral metagenomes from different benthic deep-sea ecosystems. The analyses of simulated viromes indicate that all the BLAST tools, followed by MetaVir and VMGAP, are more reliable in the affiliation of viral sequences and strains. When analysing the environmental viromes, tBLASTx, MetaVir, VMGAP and VIROME showed a similar efficiency of sequence annotation; however, MetaVir and tBLASTx identified a higher number of viral strains. These latter tools also identified a wider range of viral families than the others, providing a wider view of viral taxonomic diversity in benthic deep-sea ecosystems. Our findings highlight strengths and weaknesses of available bioinformatic tools for investigating the taxonomic diversity of viruses in benthic ecosystems in order to improve our comprehension of viral diversity in the oceans and its relationships with host diversity and ecosystem functioning.


Assuntos
Biologia Computacional/métodos , Metagenômica/métodos , Vírus/classificação , Bases de Dados de Ácidos Nucleicos , Ecossistema , Oceanos e Mares , Filogenia , Vírus/genética , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...