Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827302

RESUMO

Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Oxirredutases , Estresse Fisiológico , Gossypium/genética , Estresse Fisiológico/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fibra de Algodão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Genoma de Planta/genética
2.
PLoS One ; 19(5): e0303783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787845

RESUMO

Potato is considered a key component of the global food system and plays a vital role in strengthening world food security. A major constraint to potato production worldwide is the Potato Virus Y (PVY), belonging to the genus Potyvirus in the family of Potyviridae. Selective breeding of potato with resistance to PVY pathogens remains the best method to limit the impact of viral infections. Understanding the genetic diversity and population structure of potato germplasm is important for breeders to improve new cultivars for the sustainable use of genetic materials in potato breeding to PVY pathogens. While, genetic diversity improvement in modern potato breeding is facing increasingly narrow genetic basis and the decline of the genetic diversity. In this research, we performed genotyping-by-sequencing (GBS)-based diversity analysis on 10 commercial potato cultivars and weighted gene co-expression network analysis (WGCNA) to identify candidate genes related to PVY-resistance. WGCNA is a system biology technique that uses the WGCNA R software package to describe the correlation patterns between genes in multiple samples. In terms of consumption, these cultivars are a high rate among Iranian people. Using population structure analysis, the 10 cultivars were clustered into three groups based on the 118343 single nucleotide polymorphisms (SNPs) generated by GBS. Read depth ranged between 5 and 18. The average data size and Q30 of the reads were 145.98 Mb and 93.63%, respectively. Based on the WGCNA and gene expression analysis, the StDUF538, StGTF3C5, and StTMEM161A genes were associated with PVY resistance in the potato genome. Further, these three hub genes were significantly involved in defense mechanism where the StTMEM161A was involved in the regulation of alkalization apoplast, the StDUF538 was activated in the chloroplast degradation program, and the StGTF3C5 regulated the proteins increase related to defense in the PVY infected cells. In addition, in the genetic improvement programs, these hub genes can be used as genetic markers for screening commercial cultivars for PVY resistance. Our survey demonstrated that the combination of GBS-based genetic diversity germplasm analysis and WGCNA can assist breeders to select cultivars resistant to PVY as well as help design proper crossing schemes in potato breeding.


Assuntos
Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum tuberosum/virologia , Solanum tuberosum/genética , Potyvirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Genótipo , Polimorfismo de Nucleotídeo Único , Técnicas de Genotipagem/métodos , Melhoramento Vegetal/métodos , Genes de Plantas
3.
BMC Plant Biol ; 24(1): 468, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811873

RESUMO

BACKGROUND: The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS: In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS: This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.


Assuntos
Secas , Gossypium , Família Multigênica , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genes de Plantas , Filogenia , Adaptação Fisiológica/genética , Ceras/metabolismo , MicroRNAs/genética
4.
PLoS One ; 19(4): e0301629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573987

RESUMO

In our ongoing project, which focuses on the introgression of Booroola/FecB gene and the myostatin (MSTN) gene into purebred Moghani sheep, we assessed the performance of second-generation Moghani crossbreds such as second crossbreds (F2) and initial backcross generation (BC1). These crossbreds were generated through different mating systems, including in-breeding, outcrossing, first paternal backcrossing (PBC1), and first maternal backcrossing (MBC1). Notably, F2 strains exhibited lean tail, woolly fleece and a higher percentage of white coat color compared to BC1. The impact of mating systems and birth types on pre-weaning survival rates was found to be statistically significant (P < 0.0001), with singleton offspring resulting from paternal backcross showing a particularly substantial effect. The F2 crossbred lambs carrying the Booroola gene did not show a statistically significant difference in survivability compared to those carrying the MSTN gene, implying the Booroola prolificacy gene had no significant impact on survival outcomes. However, the occurrence of multiple births had a significant negative impact on lamb survival (P < 0.0001). The PBC1 sheep strains, specifically Texel Tamlet ram strains carrying the MSTN mutation, exhibited superior growth rates compared to others (P < 0.05). Interestingly, the MSTN mutation in the homozygous variant genotype significantly impacts growth rate before weaning compared to other genotypes and pure Moghani sheep (P < 0.05). In conclusion, this study objectively underscores the pivotal role of genetic factors, specifically through strategic mating systems like paternal backcrossing, in enhancing desired traits and growth rates in Moghani sheep, thereby contributing valuable insights to the field of sheep breeding programs.


Assuntos
Reprodução , Carneiro Doméstico , Gravidez , Feminino , Ovinos/genética , Animais , Masculino , Reprodução/genética , Carneiro Doméstico/genética , Genótipo , Mutação , Gravidez Múltipla
5.
Mamm Genome ; 35(2): 201-227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520527

RESUMO

Preserving genetic diversity is pivotal for enhancing genetic improvement and facilitating adaptive responses to selection. This study focuses on identifying key genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs), while exploring the genomic evolutionary connectedness among seven Iranian horses representing five indigenous breeds: Caspian, Turkemen, DareShuri, Kurdish, and Asil. Using whole-genome resequencing, we generated 2.7 Gb of sequence data, with raw reads ranging from 1.2 Gb for Caspian horses to 0.38 Gb for Turkoman horses. Post-filtering, approximately 1.9 Gb of reads remained, with ~ 1.5 Gb successfully mapped to the horse reference genome (EquCab3.0), achieving mapping rates between 76.4% (Caspian) and 98.35% (Turkoman). We identified 2,909,816 SNPs in Caspian horses, constituting around 0.1% of the genome. Notably, 71% of these SNPs were situated in intergenic regions, while 8.5 and 6.8% were located upstream and downstream, respectively. A comparative analysis of SNPs between Iranian and non-Iranian horse breeds showed that Caspian horses had the lowest number of shared SNPs with Turkoman horses. Instead, they showed a closer genetic relationship with DareShuri, Quarter, Arabian, Standardbred, and Asil breeds. Hierarchical clustering highlighted Caspian horses as a distinct cluster, underscoring their distinctive genomic signature. Caspian horses exhibit a unique genetic profile marked by an enrichment of private mutations in neurological genes, influencing sensory perception and awareness. This distinct genetic makeup shapes mating preferences and signifies a separate evolutionary trajectory. Additionally, significant non-synonymous single nucleotide polymorphisms (nsSNPs) in reproductive genes offer intervention opportunities for managing Caspian horses. These findings reveal the population genetic structure of Iranian horse breeds, contributing to the advancement of knowledge in areas such as conservation, performance traits, climate adaptation, reproduction, and resistance to diseases in equine science.


Assuntos
Variações do Número de Cópias de DNA , Genética Populacional , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Cavalos/genética , Irã (Geográfico) , Genoma , Cruzamento , Mutação INDEL
6.
Bioconjug Chem ; 34(11): 2034-2048, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823388

RESUMO

The selection of an appropriate amylase for hydrolysis poultry feed is crucial for achieving improved digestibility and high-quality feed. Cellulose nanocrystals (CNCs), which are known for their high surface area, provide an excellent platform for enzyme immobilization. Immobilization greatly enhances the operational stability of α-amylases and the efficiency of starch bioconversion in poultry feeds. In this study, we immobilized two metagenome-derived α-amylases, PersiAmy2 and PersiAmy3, on CNCs and employed computational methods to characterize and compare the degradation efficiencies of these enzymes for poultry feed hydrolysis. Experimental in vitro bioconversion assessments were performed to validate the computational outcomes. Molecular docking studies revealed the superior hydrolysis performance of PersiAmy3, which displayed stronger electrostatic interactions with CNCs. Experimental characterization demonstrated the improved performance of both α-amylases after immobilization at high temperatures (80 °C). A similar trend was observed under alkaline conditions, with α-amylase activity reaching 88% within a pH range of 8.0 to 9.0. Both immobilized α-amylases exhibited halotolerance at NaCl concentrations up to 3 M and retained over 50% of their initial activity after 13 use cycles. Notably, PersiAmy3 displayed more remarkable improvements than PersiAmy2 following immobilization, including a significant increase in activity from 65 to 80.73% at 80 °C, an increase in activity to 156.48% at a high salinity of 3 M NaCl, and a longer half-life, indicating greater thermal stability within the range of 60 to 80 °C. These findings were substantiated by the in vitro hydrolysis of poultry feed, where PersiAmy3 generated 53.53 g/L reducing sugars. This comprehensive comparison underscores the utility of computational methods as a faster and more efficient approach for selecting optimal enzymes for poultry feed hydrolysis, thereby providing valuable insights into enhancing feed digestibility and quality.


Assuntos
Nanopartículas , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , Hidrólise , Celulose/química , Simulação de Acoplamento Molecular , Aves Domésticas/metabolismo , Cloreto de Sódio
7.
PLoS One ; 18(7): e0287777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471390

RESUMO

Salmo caspius Kessler, 1877 is one of the most commercially important species of Salmonidae in the southern basin of the Caspian Sea. The occurrence of its wild populations has undergone sever reduction during the last years. In spite of the yearly restocking activity, still no progress on the recovery of its wild population has been observed. Hence, the present study was done in order to assess the efficiency of the current restocking activity in the southern Caspian basin in term of genetic diversity. DNA extracts of 32 S. caspius from four different groups were screened using 62621 genome-wide single nucleotide polymorphisms (SNP). The overal genetic diversity and Fst values were 0.18 and 0.08, respectively. Considering the observed admixture pattern and the positive values for inbreeding coeficient it seems that S. caspius suffers from its small effective population size. In order to obtain the maximum performance, alonside with expanding the size of brood stocks, rehabilitation of the habitats and spawning rivers of this nationally endangered species is of great importance.


Assuntos
Salmo salar , Truta , Animais , Truta/genética , Mar Cáspio , Densidade Demográfica
8.
BMC Genomics ; 24(1): 152, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973662

RESUMO

BACKGROUND: The mechanisms underlying rice root responses to drought during the early developmental stages are yet unknown. RESULTS: This study aimed to determine metabolic differences in IR64, a shallow-rooting, drought-susceptible genotype, and Azucena, a drought-tolerant and deep-rooting genotype under drought stress. The morphological evaluation revealed that Azucena might evade water stress by increasing the lateral root system growth, the root surface area, and length to access water. At the same time, IR64 may rely mainly on cell wall thickening to tolerate stress. Furthermore, significant differences were observed in 49 metabolites in IR64 and 80 metabolites in Azucena, for which most metabolites were implicated in secondary metabolism, amino acid metabolism, nucleotide acid metabolism and sugar and sugar alcohol metabolism. Among these metabolites, a significant positive correlation was found between allantoin, galactaric acid, gluconic acid, glucose, and drought tolerance. These metabolites may serve as markers of drought tolerance in genotype screening programs. Based on corresponding biological pathways analysis of the differentially abundant metabolites (DAMs), biosynthesis of alkaloid-derivatives of the shikimate pathway, fatty acid biosynthesis, purine metabolism, TCA cycle and amino acid biosynthesis were the most statistically enriched biological pathway in Azucena in drought response. However, in IR64, the differentially abundant metabolites of starch and sucrose metabolism were the most statistically enriched biological pathways. CONCLUSION: Metabolic marker candidates for drought tolerance were identified in both genotypes. Thus, these markers that were experimentally determined in distinct metabolic pathways can be used for the development or selection of drought-tolerant rice genotypes.


Assuntos
Resistência à Seca , Oryza , Oryza/metabolismo , Redes e Vias Metabólicas , Secas , Genótipo , Aminoácidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
9.
PLoS One ; 18(2): e0265977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735649

RESUMO

Pomegranate has been considered a medicinal plant due to its rich nutrients and bioactive compounds. Since environmental conditions affect the amount and composition of metabolites, selecting suitable locations for cultivation would be vital to achieve optimal production. In this study, data on the diversity of targeted metabolites and morphological traits of 152 Iranian pomegranate genotypes were collected and combined in order to establish the first core collection. The multivariate analyses were conducted including principal component analysis (PCA), and cluster analysis. In addition, the current and future geographical distribution of pomegranate in Iran was predicted to identify suitable locations using the MaxEnt model. The results showed high diversity in the studied morphological and metabolic traits. The PCA results indicated that FFS, NFT, JA, and AA are the most important traits in discriminating the studied genotypes. A constructed core collection using maximization strategy consisted of 20 genotypes and accounted for 13.16% of the entire collection. Shannon-Weaver diversity index of a core collection was similar or greater than the entire collection. Evaluation of the core collection using four parameters of MD, VD, CR, and VR also indicated the maintenance of the genetic diversity of the original set. According to the MaxEnt model, altitude, average temperature of coldest quarter, and isothertmality were the key factors for the distribution of pomegranate. The most suitable areas for pomegranate cultivation were also determined which were located in arid and semi-arid regions of Iran. The geographic distribution of pomegranate in the future showed that the main provinces of pomegranate cultivation would be less affected by climatic conditions by the middle of the century. The results of this study provide valuable information for selection of elite genotypes to develop the breeding programs to obtain the cultivars with the highest levels of metabolic compounds for pharmaceutical purposes, as well as identification of the most suitable agro-ecological zones for orchard establishment.


Assuntos
Punica granatum , Irã (Geográfico) , Mudança Climática , Melhoramento Vegetal , Fenótipo
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499756

RESUMO

The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.


Assuntos
Hydrangea , Hydrangea/genética , Hydrangea/química , Perfilação da Expressão Gênica , Flores/metabolismo , Transcriptoma , Pigmentação/genética , Concentração de Íons de Hidrogênio , Regulação da Expressão Gênica de Plantas , Antocianinas/metabolismo
11.
Mol Biol Rep ; 49(12): 11983-11996, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271979

RESUMO

BACKGROUND: Plant organelles are highly motile where their movement is significant for fast distribution of material around the cell, facilitation of the plant's ability to respond to abiotic and biotic signals, and for appropriate growth. Abiotic and biotic stresses are among the major factors limiting crop yields, and biological membranes are the first target of these stresses. Plants utilize adaptive mechanisms namely myosin to repair injured membranes following exposure to abiotic and biotic stresses. OBJECTIVE: Due to the economic importance and cultivation of potato grown under abiotic and biotic stress prone areas, identification and characterization of myosin family members in potato were performed in the present research. METHODS: To identify the myosin genes in potato, we performed genome-wide analysis of myosin genes in the S. tuberosum genome using the phytozome. All putative sequences were approved with the interproscan. Bioinformatics analysis was conducted using phylogenetic tree, gene structure, cis-regulatory elements, protein-protein interaction, and gene expression. RESULT: The majority of the cell machinery contain actin cytoskeleton and myosins, where motility of organelles are dependent on them. Homology-based analysis was applied to determine seven myosin genes in the potato genome. The members of myosin could be categorized into two groups (XI and VIII). Some of myosin proteins were sub-cellularly located in the nucleus containing 71.5% of myosin proteins and other myosin proteins were localized in the mitochondria, plasma-membrane, and cytoplasm. Determination of co-expressed network, promoter analysis, and gene structure were also performed and gene expression pattern of each gene was surveyed. Number of introns in the gene family members varied from 1 to 39. Gene expression analysis demonstrated that StMyoXI-B and StMyoVIII-2 had the highest transcripts, induced by biotic and abiotic stresses in all three tissues of stem, root, and leaves, respectively. Overall, different cis-elements including abiotic and biotic responsive, hormonal responsive, light responsive, defense responsive elements were found in the myosin promoter sequences. Among the cis-elements, the MYB, G-box, ABRE, JA, and SA contributed the most in the plant growth and development, and in response to abiotic and biotic stress conditions. CONCLUSION: Our results showed that myosin genes can be utilized in breeding programs and genetic engineering of plants with the aim of increasing tolerance to abiotic and biotic stresses, especially to viral stresses such as PVY, PVX, PVA, PVS, high light, drought, cold and heat.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Secas , Filogenia , Proteínas de Plantas/metabolismo , Temperatura Alta , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas/metabolismo , Miosinas/genética , Miosinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
12.
Anim Genet ; 53(6): 723-739, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184760

RESUMO

Sheep is a major contributor to global food production among livestock and one of the great sources of red meat for human consumption. Several QTL and numerous genes with major and minor effects have been identified in association with the muscle characteristics in sheep breeds worldwide. Understanding the genetic background of growth and carcass-related traits in sheep is a major factor in increasing muscle growth, muscle hypertrophy and, eventually, meat production. This review concisely shows how major signaling pathways control skeletal muscle growth. Herein we aimed to discuss and summarize different research findings on genomic regions related to carcass traits and meat production in sheep. Several causative mutations with major effects on different muscle-related traits have been reported in various sheep breeds. A general overview of the studies on main candidate genes showed that some alleles have major phenotypic effects in different breeds with commercial and farm level usability. However, numerous genes with minor effects were also reported regarding the polygenic nature of muscle-related traits. The knowledge of the candidate genes involved in growth traits and their effects provides valuable information for breeding and selection of muscularity traits.


Assuntos
Carne Vermelha , Humanos , Ovinos/genética , Animais , Fenótipo , Carne , Músculos , Genoma
13.
Proteomics ; 22(21): e2200100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920597

RESUMO

Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.


Assuntos
Oryza , Oryza/metabolismo , Secas , Proteômica , Meristema/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
15.
Life (Basel) ; 12(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35888047

RESUMO

Morphology and feature selection are key approaches to address several issues in fisheries science and stock management, such as the hypothesis of admixture of Caspian common carp (Cyprinus carpio) and farmed carp stocks in Iran. The present study was performed to investigate the population classification of common carp in the southern Caspian basin using data mining algorithms to find the most important characteristic(s) differing between Iranian and farmed common carp. A total of 74 individuals were collected from three locations within the southern Caspian basin and from one farm between November 2015 and April 2016. A dataset of 26 traditional morphometric (TMM) attributes and a dataset of 14 geometric landmark points were constructed and then subjected to various machine learning methods. In general, the machine learning methods had a higher prediction rate with TMM datasets. The highest decision tree accuracy of 77% was obtained by rule and decision tree parallel algorithms, and "head height on eye area" was selected as the best marker to distinguish between wild and farmed common carp. Various machine learning algorithms were evaluated, and we found that the linear discriminant was the best method, with 81.1% accuracy. The results obtained from this novel approach indicate that Darwin's domestication syndrome is observed in common carp. Moreover, they pave the way for automated detection of farmed fish, which will be most beneficial to detect escapees and improve restocking programs.

16.
Sci Rep ; 12(1): 7359, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513472

RESUMO

Trigonella foenum-graecum is widely distributed worldwide and grown under a wide range of climatic conditions. The current research was conducted to study the effects of the environmental variables on yield related traits and metabolite contents of 50 different Persian fenugreeks at various geographical locations. Accordingly, multivariate statistical techniques including canonical correspondence analysis (CCA), hierarchical clustering on principal components, and partial least squares regression (PLSR) were applied to determine important proxy variables and establish a relevant model to predict bioactive compounds in fenugreeks. The interrelation of clustered groups emphasized the importance of functional groups of bioactive compounds and several yield related traits. The CCA indicated that two climatic variables of temperature and solar irradiation contributed prominently to 4-hydroxyisoleucine accumulation. The predicted model based on PLSR revealed climatic variables such as temperature, solar, and rain. The precursor of isoleucine was the predictive power for 4-hydroxyisoleucine accumulation while seed weight predicted trigonelline content. The current study's findings may provide helpful information for the breeding strategies of this multipurpose crop.


Assuntos
Trigonella , Melhoramento Vegetal , Extratos Vegetais/farmacologia , Sementes
17.
J Genet Eng Biotechnol ; 20(1): 25, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147812

RESUMO

BACKGROUND: The Plant U-box (PUB), ubiquitin ligase gene, has a highly conserved domain in potato. However, little information is available about U-box genes in potato (Solanum tuberosum). In this study, 62 U-box genes were detected in the potato genome using bioinformatics methods. Further, motif analysis, gene structure, gene expression, TFBS, and synteny analysis were performed on the U-box genes. RESULTS: Based on in silico analysis, most of StU-boxs included a U-box domain; however, some of them lacked harbored domain the ARM, Pkinase_Tyr, and other domains. Based on their phylogenetic relationships, the StU-box family members were categorized into four classes. Analysis of transcription factor binding sites (TFBS) in the promoter region of StU-box genes revealed that StU-box genes had the highest and the lowest number of TFBS in MYB and CSD, respectively. Moreover, based on in silico and gene expression data, variable frequencies of TFBS in StU-box genes could indicate that these genes control different developmental stages and are involved in complex regulatory mechanisms. The number of exons in U-box genes ranged from one to sixteen. For most U-box genes, the exon-intron compositions and conserved motifs composition in most proteins in each group were similar. The intron-exon patterns and the composition of conserved motifs validated the U-box genes phylogenetic classification. Based on the results of genome distribution, StU-box genes were distributed unevenly on the 12 S. tuberosum chromosomes. The results showed that gene duplication may possess a significant role in genome expansion of S. tuberosum. Furthermore, genome evolution of S. tuberosum was surveyed using identification of orthologous and paralogous. We identified 40 orthologous gene pairs between S. tuberosum with Solanum lycopersicum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Zea maize, Coriaria mytifolia, and Arabidopsis thaliana as well as eight duplicated genes (paralogous) in S. tuberosum. StU-box 51 gene is one of the important gene among other StU-boxes in S. tuberosum under drought stress which was expressed in tuber and leaf under drought stress. Furthermore, StU-box 51 gene has the highest expression levels in four tissue-specific (stem, root, leaf, and tuber) in potato as well as it had the highest number of TFBS in promoter region. Based on our results, StU-box 51 can introduce to researcher to utilize in breeding program and genetic engineering in potato. CONCLUSIONS: The results of this survey will be useful for further investigation of the probable role and molecular mechanisms of U-box genes in response to different stresses.

18.
Front Plant Sci ; 12: 699139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456940

RESUMO

Every winter, temperate woody plants have to cope with freezing stress. Winter hardiness is of crucial importance for pomegranate survival and productivity. A comparative morphological and metabolic study was conducted on the stems and buds of 15 field-grown mature pomegranate genotypes in seven time-points during two developmental cycles. Seasonal changes of frost hardiness, as determined by electrolyte leakage method, and metabolite analysis by HPLC and GC revealed the variability in frost hardiness and metabolic contents result from genetic background and organ, as well as seasonal condition. Morphological adaptations, as well as metabolic remodeling, are the distinct features of the hardy genotypes. Larger buds with a greater number of compressed scales and the higher number of protective leaves, together with the higher number and content of changed metabolites, especially amino acids, seem to provide a higher frost resistance for those trees. We recorded two-times the change in metabolites and several-times accumulation of amino acids in the stem compared with buds. A better potential of stem for metabolome adjustment during the hardening period and a higher level of tolerance to stress is therefore suggested. High levels of arginine, proline, glutamine, and asparagine, and particularly the accumulation of alanine, tryptophan, and histidine are responsible for excellent tolerance of the stem of tolerant genotypes. With regard to the protective roles of amino acids, a relation between stress tolerance and the level of amino acids is proposed. This points both to the importance of amino acids in the winter survival of pomegranate trees, and to the evaluation of frost tolerance in other plants, by these specific markers.

19.
PLoS One ; 16(4): e0241162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891613

RESUMO

Iran is one of the origins of some Salicornia species. Nevertheless, comprehensive research has not been conducted on genetic potential, distribution, selection of populations, and the economic utilization of Salicornia in Iran. In the current study, Salicornia was collected based on the previous data available for 26 different geographical locations of provinces in Iran. We examined Salicornia plants' universality DNA barcodes, including rbcL, matK, trnH-psbA, and ITS, and their species identification abilities and identified six species groups. Subsequently, accurate modeling of distributed areas was provided with MAXENT and highlighted the valuable information on the diversity of specific geographical regions, conservation status of existing species, prioritization of conservation areas, and selection of Agro-Ecological areas. Together, this type of integrative study will provide useful information for managing and utilizing Salicornia genetic resources in Iran.


Assuntos
Chenopodiaceae/genética , DNA de Plantas/genética , Código de Barras de DNA Taxonômico/métodos , Genética , Irã (Geográfico) , Filogenia , Análise de Sequência de DNA/métodos , Análise Espacial , Especificidade da Espécie
20.
PLoS One ; 16(3): e0248623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725012

RESUMO

Iran is a center of origin and diversity for walnuts (Juglans regia L.) with very good potential for breeding purposes. The rich germplasm available, creates an opportunity for study and selection of the diverse walnut genotypes. In this study, the population structure of 104 Persian walnut accessions was assessed using AFLP markers in combination with phenotypic variability of 17 and 18 qualitative and quantitative traits respetively. The primers E-TG/M-CAG, with high values of number of polymorphic bands, polymorphic information content, marker index and Shannon's diversity index, were the most effective in detecting genetic variation within the walnut germplasm. Multivariate analysis of variance indicated 93.98% of the genetic variability was between individuals, while 6.32% of variation was among populations. A relatively new technique, an advanced maximization strategy with a heuristic approach, was deployed to develop the core collection. Initially, three independent core collections (CC1-CC3) were created using phenotypic data and molecular markers. The three core collections (CC1-CC3) were then merged to generate a composite core collection (CC4). The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity were employed for comparative analysis. The CC4 with 46 accessions represented the complete range of phenotypic and genetic variability. This study is the first report describing development of a core collection in walnut using molecular marker data in combination with phenotypic values. The construction of core collection could facilitate the work for identification of genetic determinants of trait variability and aid effective utilization of diversity caused by outcrossing, in walnut breeding programs.


Assuntos
Juglans/genética , Nozes/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Variação Genética , Genótipo , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...