Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Neurosurg ; 37(5): 1031-1039, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33263433

RESUMO

OBJECTIVE: To determine the border of glial tumors by diffusion weighted imaging (DWI), apparent diffusion co-efficient (ADC), magnetic resonance spectroscopy (MRS) and perfusion brain MRI. PATIENTS AND METHODS: Ten patients with brain gliomas were enrolled [mean age: 35.3 ± 13.2, range: 20-62]. Conventional MRI was performed for all patients. Besides, tumor mapping based on Choline (Cho)/Creatine (Cr) color map in MRS, perfusion and diffusion color maps, were gathered. Different tumoral and peritumoral regions [normal tissue, reactive edema, infiltrative edema, and tumor core] were defined. MRI criteria were evaluated in areas targeted for biopsy and histopathologic evaluation was determined. RESULTS: Tumor cell positive samples [one necrosis, 26 infiltrative and nine tumor cores] composed 36 (75%) of the 48 samples. Seven (19.4%) of the positive samples were interpreted as not tumor on MRI. Five were identified as reactive edema and two as normal tissue] [kappa: .67, p-value < .001]. Mean of ADC, median of N-acetylaspartate (NAA) and NAA/Cho were statistically different between positive and negative samples (p = .02 and p < .001, respectively). Mean ADC and median Cho/NAA were statistically different in missed tumor containing tissue presented as reactive edema compared to normal and correctly diagnosed reactive edema samples together (p-values < .05). CONCLUSIONS: Multimodal MRI could define infiltrated borders of brain gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glioma/complicações , Glioma/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Edema/diagnóstico por imagem , Edema/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
J Magn Reson Imaging ; 48(4): 938-950, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29412496

RESUMO

BACKGROUND: Targeted localized biopsies and treatments for diffuse gliomas rely on accurate identification of tissue subregions, for which current MRI techniques lack specificity. PURPOSE: To explore the complementary and competitive roles of a variety of conventional and quantitative MRI methods for distinguishing subregions of brain gliomas. STUDY TYPE: Prospective. POPULATION: Fifty-one tissue specimens were collected using image-guided localized biopsy surgery from 10 patients with newly diagnosed gliomas. FIELD STRENGTH/SEQUENCE: Conventional and quantitative MR images consisting of pre- and postcontrast T1 w, T2 w, T2 -FLAIR, T2 -relaxometry, DWI, DTI, IVIM, and DSC-MRI were acquired preoperatively at 3T. ASSESSMENT: Biopsy specimens were histopathologically attributed to glioma tissue subregion categories of active tumor (AT), infiltrative edema (IE), and normal tissue (NT) subregions. For each tissue sample, a feature vector comprising 15 MRI-based parameters was derived from preoperative images and assessed by a machine learning algorithm to determine the best multiparametric feature combination for characterizing the tissue subregions. STATISTICAL TESTS: For discrimination of AT, IE, and NT subregions, a one-way analysis of variance (ANOVA) test and for pairwise tissue subregion differentiation, Tukey honest significant difference, and Games-Howell tests were applied (P < 0.05). Cross-validated feature selection and classification methods were implemented for identification of accurate multiparametric MRI parameter combination. RESULTS: After exclusion of 17 tissue specimens, 34 samples (AT = 6, IE = 20, and NT = 8) were considered for analysis. Highest accuracies and statistically significant differences for discrimination of IE from NT and AT from NT were observed for diffusion-based parameters (AUCs >90%), and the perfusion-derived parameter as the most accurate feature in distinguishing IE from AT. A combination of "CBV, MD, T2 _ISO, FLAIR" parameters showed high diagnostic performance for identification of the three subregions (AUC ∼90%). DATA CONCLUSION: Integration of a few quantitative along with conventional MRI parameters may provide a potential multiparametric imaging biomarker for predicting the histopathologically proven glioma tissue subregions. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;48:938-950.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Algoritmos , Biópsia , Meios de Contraste , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...