Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 1(1): 55-68, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-15256968

RESUMO

There is a pressing need for alternative therapeutic methods effective in the treatment of patients with liver insufficiency. Isolated human hepatocytes may be a viable alternative or adjunct to orthotopic liver transplantation in such patients. The purpose of this study was to evaluate the viability and functional integrity of freshly isolated and cryopreserved human hepatocytes, in preparation for a multi-center human hepatocyte transplantation trial. We are currently processing transplant-grade human parenchymal liver cells from nondiseased human livers that are obtained through a network of organ procurement organizations (OPOs). Thus far, sixteen hepatocyte transplants have been performed using hepatocytes processed by our methods. At the time of referral all specimens were deemed unsuitable for transplantation due to anatomical anomalies, high fat content, medical history, etc. Hepatocytes were isolated from encapsulated liver sections by a modified two-step perfusion technique. Isolated cells were cryopreserved and stored in liquid nitrogen for one to twelve months. The total yield of freshly isolated hepatocytes averaged 3.7x10(7) cells per gram of wet tissue. Based on trypan blue exclusion, fresh preparations contained an average of 85% viable hepatocytes vs. 70% in cryopreserved samples. The plating efficiencies of cells seeded immediately after isolation ranged from 87% to 98%, while those of cryopreserved/thawed cells were markedly lower. Flow cytometry analysis of cells labeled with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) showed that there was no significant difference in viability compared with trypan blue staining. Both freshly isolated hepatocytes and those recovered from cryopreservation showed typical and intact morphology as demonstrated by light and electron microscopy. The product of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reaction was always expressed more intensely in cultures of freshly isolated hepatocytes. Measurements of lactate dehydrogenase (LDH) leakage were inversely correlated with trypan blue exclusion and CFSE labeling. Energy status, evaluated by the intracellular ATP concentration measurements, and various liver-specific functions such as urea synthesis and metabolism of 7-ethoxycoumarin were maintained both in fresh and cryopreserved/thawed hepatocytes. However, the activities were expressed at different levels in thawed cells. These data illustrate the importance and feasibility of human hepatocyte banking. In addition, it is clear that further refinements in the methods of hepatocyte isolation and cryopreservation are needed to utilize more fully these valuable cells in the clinic.

2.
Drug Metab Dispos ; 27(7): 804-9, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10383924

RESUMO

Human small intestine epithelial cells (enterocytes) provide the first site for cytochrome P-450 (CYP)-catalyzed metabolism of orally ingested xenobiotics. The CYP composition of enterocytes could thus affect the potential toxicity or therapeutic efficacy of xenobiotics by modifying systemic uptake. We have characterized human enterocyte CYP composition to enable assessment of its functional roles. An isolation method for enterocytes from human small intestine was developed using EDTA buffer-mediated elution. Villous enterocytes were isolated in high yield, separated from crypt cells. Reverse transcriptase-polymerase chain reaction of total RNA from enterocytes revealed that CYP1A1, 1B1, 2C, 2D6, 2E1, 3A4, and 3A5 mRNA were expressed, but only CYP2C and 3A4 were detectable by Western immunoblotting in enterocyte microsomes from 10 human small intestines, whereas CYP1A1 was weakly detectable in two of eight intestines tested. Microsomal protein content decreased markedly along the small intestine from the duodenum to the ileum, whereas total CYP content and CYP3A4 erythromycin N-demethylase activity increased slightly in progressing from the duodenum to the jejunum and then decreased markedly toward the ileum. Levels of CYP3A4 and 2C protein did not decrease in concert as a function of length along the intestine distally. Maximal CYP content for the 10 intestines varied from 0.06 to 0.18 nmol/mg microsomal protein and maximal CYP3A4 erythromycin N-demethylase activity varied from 0.30 to 0.76 nmol/min/mg microsomal protein. In conclusion, CYP3A4 is the major form of CYP expressed in human small intestine enterocytes, CYP3A5 expression was not detected, CYP2C and, in some intestines, CYP1A1 were expressed. The highest metabolic activity occurred in the proximal intestine.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Intestino Delgado/enzimologia , Isoenzimas/metabolismo , Adolescente , Adulto , Idoso , Sequência de Bases , Linhagem Celular , Primers do DNA , Células Epiteliais/enzimologia , Feminino , Humanos , Intestino Delgado/citologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...