Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 189: 69-79, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981629

RESUMO

Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.


Assuntos
Éter , Plasmalogênios , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina , Animais , Barreira Hematoencefálica , Células Endoteliais , Éter/farmacologia , Feminino , Éteres de Glicerila , Mamíferos , Camundongos , Proteínas de Neoplasias , Placenta , Gravidez
2.
Eur Urol ; 82(3): 261-270, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35393162

RESUMO

BACKGROUND: The heterogeneity of bladder cancers (BCs) is a major challenge for the development of novel therapies. However, given the high rates of recurrence and/or treatment failure, the identification of effective therapeutic strategies is an urgent clinical need. OBJECTIVE: We aimed to establish a model system for drug identification/repurposing in order to identify novel therapies for the treatment of BC. DESIGN, SETTING, AND PARTICIPANTS: A collection of commercially available BC cell lines (n = 32) was comprehensively characterized. A panel of 23 cell lines, representing a broad spectrum of BC, was selected to perform a high-throughput drug screen. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Positive hits were defined as compounds giving >50% inhibition in at least one BC cell line. RESULTS AND LIMITATIONS: Amongst >1700 tested chemical compounds, a total of 471 substances exhibited antineoplastic effects. Clofarabine, an antimetabolite drug used as third-line treatment for childhood acute lymphoblastic leukaemia, was amongst the limited number of drugs with inhibitory effects on cell lines of all intrinsic subtypes. We, thus, reassessed the substance and confirmed its inhibitory effects on commercially available cell lines and patient-derived cell cultures representing various disease stages, intrinsic subtypes, and histologic variants. To verify these effects in vivo, a patient-derived cell xenograft model for urothelial carcinoma (UC) was used. Well-tolerated doses of clofarabine induced complete remission in all treated animals (n = 12) suffering from both early- and late-stage disease. We further took advantage of another patient-derived cell xenograft model originating from the rare disease entity sarcomatoid carcinoma (SaC). Similarly to UC xenograft mice, clofarabine induced subcomplete to complete tumour remissions in all treated animals (n = 8). CONCLUSIONS: The potent effects of clofarabine in vitro and in vivo suggest that our findings may be of high clinical relevance. Clinical trials are needed to assess the value of clofarabine in improving BC patient care. PATIENT SUMMARY: We used commercially available cell lines for the identification of novel drugs for the treatment of bladder cancer. We confirmed the effects of one of these drugs, clofarabine, in patient-derived cell lines and two different mouse models, thereby demonstrating a potential clinical relevance of this substance in bladder cancer treatment.


Assuntos
Carcinoma de Células de Transição , Leucemia-Linfoma Linfoblástico de Células Precursoras , Neoplasias da Bexiga Urinária , Animais , Clofarabina/uso terapêutico , Detecção Precoce de Câncer , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
Bio Protoc ; 10(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473360

RESUMO

Mimicking the various facets of human psychiatric and neurodevelopmental disorders in animal models is a challenging task. Nevertheless, mice have emerged as a widely used model system to study pathophysiology and treatment strategies for these diseases. However, the corresponding behavioral tests are often elaborate and require extensive experience in behavioral testing. Here, we present protocols for two simple assays, nest building and nestlet shredding, that can serve as a starting point for the behavioral phenotyping of mouse models with (potential) features of psychiatric disorders. Both tests have been reported previously and we extend prior descriptions by including adaptations and refinements derived from our practical experience, like the use of the home cage instead of a fresh cage for nestlet shredding. Summarized, we provide ready-to-use protocols for two behavioral assays that allow the generation of robust data with minimal time and cost expenditure and enable an initial assessment of features of psychiatric or neurodevelopmental disorders in mouse models of these diseases.

4.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412538

RESUMO

Ether lipids form a specialized subgroup of phospholipids that requires peroxisomes to be synthesized. We have previously detected that deficiency in these lipids leads to a severe disturbance of neurotransmitter homeostasis and release as well as behavioral abnormalities, such as hyperactivity, in a mouse model. Here, we focused on a more detailed examination of the behavioral phenotype of ether lipid-deficient mice (Gnpat KO) and describe a set of features related to human psychiatric disorders. Gnpat KO mice show strongly impaired social interaction as well as nestlet shredding and marble burying, indicating disturbed execution of inborn behavioral patterns. Also, compromised contextual and cued fear conditioning in these animals suggests a considerable memory deficit, thus potentially forming a connection to the previously determined ether lipid deficit in human patients with Alzheimer's disease. Nesting behavior and the preference for social novelty proved normal in ether lipid-deficient mice. In addition, we detected task-specific alterations in paradigms assessing depression- and anxiety-related behavior. The reported behavioral changes may be used as easy readout for the success of novel treatment strategies against ether lipid deficiency in ameliorating nervous system-associated symptoms. Furthermore, our findings underline that ether lipids are paramount for brain function and demonstrate their relevance for cognitive, social, and emotional behavior. We hereby substantially extend previous observations suggesting a link between deficiency in ether lipids and human mental illnesses, particularly autism and attention-deficit hyperactivity disorder.


Assuntos
Comportamento Animal , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Fenótipo , Éteres Fosfolipídicos/metabolismo , Fosfolipídeos/deficiência , Animais , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Transtornos Mentais/diagnóstico , Transtornos Mentais/metabolismo , Camundongos , Camundongos Knockout , Neurotransmissores/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Comportamento Social
5.
Hum Mol Genet ; 28(12): 2046-2061, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30759250

RESUMO

Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Lipídeos/deficiência , Norepinefrina/metabolismo , Aciltransferases/genética , Animais , Sintomas Comportamentais/genética , Sintomas Comportamentais/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Dopamina/deficiência , Éter/química , Éter/metabolismo , Homeostase , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Plasmalogênios , Agitação Psicomotora/genética , Agitação Psicomotora/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Habilidades Sociais , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
6.
J Neurochem ; 143(5): 569-583, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28555889

RESUMO

Inherited deficiency in ether lipids, a subgroup of phospholipids whose biosynthesis needs peroxisomes, causes the fatal human disorder rhizomelic chondrodysplasia punctata. The exact roles of ether lipids in the mammalian organism and, therefore, the molecular mechanisms underlying the disease are still largely enigmatic. Here, we used glyceronephosphate O-acyltransferase knockout (Gnpat KO) mice to study the consequences of complete inactivation of ether lipid biosynthesis and documented substantial deficits in motor performance and muscle strength of these mice. We hypothesized that, probably in addition to previously described cerebellar abnormalities and myelination defects in the peripheral nervous system, an impairment of neuromuscular transmission contributes to the compromised motor abilities. Structurally, a morphologic examination of the neuromuscular junction (NMJ) in diaphragm muscle at different developmental stages revealed aberrant axonal branching and a strongly increased area of nerve innervation in Gnpat KO mice. Post-synaptically, acetylcholine receptor (AChR) clusters colocalized with nerve terminals within a widened endplate zone. In addition, we detected atypical AChR clustering, as indicated by decreased size and number of clusters following stimulation with agrin, in vitro. The turnover of AChRs was unaffected in ether lipid-deficient mice. Electrophysiological evaluation of the adult diaphragm indicated that although evoked potentials were unaltered in Gnpat KO mice, ether lipid deficiency leads to fewer spontaneous synaptic vesicle fusion events but, conversely, an increased post-synaptic response to spontaneous vesicle exocytosis. We conclude from our findings that ether lipids are essential for proper development and function of the NMJ and may, therefore, contribute to motor performance. Read the Editorial Highlight for this article on page 463.


Assuntos
Força Muscular/fisiologia , Debilidade Muscular/fisiopatologia , Junção Neuromuscular/fisiopatologia , Fosfolipídeos/deficiência , Animais , Diafragma/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Debilidade Muscular/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...