Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433400

RESUMO

Soil tests for plant-available phosphorus (P) are suggested to provide offsite P analysis required to monitor P fertilizer application and reduce P losses to downstream water. However, procedural and cost limitations of current soil phosphate tests have restricted their widespread use and have made them accessible only in laboratories. This study proposes a novel paper-based reagentless electrochemical soil phosphate sensor to extract and detect soil phosphate using an inexpensive and simple approach. In this test, concentrated Mehlich-3 and molybdate ions were impregnated in filter paper, which served as the phosphate extraction and reaction zone, and was followed by electrochemical detection using cyclic voltammetry signals. Soil samples from 22 sampling sites were used to validate this method against inductively coupled plasma optical emission spectroscopy (ICP) soil phosphate tests. Regression and correlation analyses showed a significant relationship between phosphate determinations by ICP and the proposed method, delivering a correlation coefficient, r, of 0.98 and a correlation slope of 1.02. The proposed approach provided a fast, portable, low-cost, accessible, reliable, and single-step test to extract and detect phosphate simultaneously with minimum waste (0.5 mL per sample), which made phosphate characterization possible in the field.


Assuntos
Poluentes do Solo , Solo , Solo/química , Fosfatos/análise , Fósforo/análise , Fertilizantes/análise , Poluentes do Solo/análise
2.
Sensors (Basel) ; 21(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435201

RESUMO

The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g., MPS-6) principles. Parametric models were used to quantify θ-ψ relationships at various depths and were compared to laboratory-measured SWRC. The results of the study show that combining TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean difference of -0.03 to 0.23 m3m-3 between the modeled data and laboratory data, which could be caused by the sensors' lack of site-specific calibration or possible air entrapment of field soil. However, consistent trends (with magnitude differences) indicated the potential to use these sensors in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming resource-intensive laboratory measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA