Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852412

RESUMO

Accurate identification of groundwater potential areas in arid regions is an important task for groundwater management and sustainability. As a result, this study used the innovative integration of remote sensing (RS), geographic information system (GIS), watershed modeling system (WMS), geophysical survey, and water mass balance equation to identify potential groundwater areas in the W. Dara, Eastern Desert, Egypt. A weighted spatial probability model (WSPM) of groundwater potential based on eight regulatory factors was implemented within ArcGIS software. Drainage density (DD), precipitation (P), net groundwater recharge (NGR), terrain slope (TS), lineament density (LD), lithologic group (LG), water quality (TDS), and depth to groundwater level (DGW) are the aspects considered. The Analytical hierarchy process (AHP) method was used to assign weights to these parameters, and their accuracy was estimated using the consistency ratio (CR). The resulting groundwater potential map classified W. Dara study area into five categories, ranging from very low to very high potential. A geophysical survey, in the form of Vertical Electrical Sounding (VES) and Transient Electromagnetic (TEM), was conducted along W. Dara to validate the results of the WSPM, which identified areas of high groundwater potential. The 1D inversion of VES/TEM shows that the central and western parts of W. Dara are considered the most promising areas for groundwater occurrence, and are located in areas of high and very high potential classes derived from WSPM. Moreover, the results of VES and TEM surveys showed that the proposed aquifers (Nubian Sandstone, Miocene, and Quaternary) in the study area are horizontally and vertically connected through a set of normal faults traversing NW-SE. Ten sites have been proposed for drilling additional exploitative wells in W. Dara area based on the WSPM and geophysical survey with the aim of sustainable development. Thus, the integrated techniques applied in this study proved effective in accurately determining the development strategy for arid and semi-arid coastal areas, especially those that suffer from scarcity of rainfall and increased agricultural reclamation requirements in remote areas.


Assuntos
Sistemas de Informação Geográfica , Água Subterrânea , Tecnologia de Sensoriamento Remoto , Água Subterrânea/análise , Egito , Monitoramento Ambiental/métodos , Qualidade da Água , Modelos Teóricos
2.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772198

RESUMO

Water is a basic element of the natural environment and the most important component in human water management. Rainfall is the main source of water. Therefore, determining the amount of precipitation reaching the ground using sensors is crucial information. Precise precipitation data are necessary for better modeling quality, as the observation data from weather stations are used as basics for weather model assessment. The authors compared precipitation from the Hellmann rain gauge (climatic precipitation, 1.0 m above the ground surface) measured throughout the year and the GGI 3000 rain gauge (actual precipitation on the ground level) measured from April to October. Measurement sequences from the years 2011-2020 were considered. The data for analysis were obtained from a weather station located in northern Poland. The authors analyzed the relationships between data from the two sensors. A comparative study showed that the measurements of actual precipitation are higher and there are strong relationships between actual and climatic rainfall (r = 0.99). Using the introduced coefficient it is possible to determine the full-year actual precipitation with high probability, taking into account the precipitation with a correction from the winter half-year and the actual precipitation from the summer half-year, which is of great importance in the calculation of the water balance.

3.
Sci Rep ; 13(1): 247, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604535

RESUMO

Understanding the temporal and spatial patterns of flood in the Awash River basin, which is located in Ethiopia's Afar region, is crucial. The Awash basin was picked because it is continuously in danger both spatially and temporally. The likelihood of flooding was assessed using eight independent variables: elevation, slope, rainfall, drainage density, land use, soil type, wetness index, and lineament density. Each constituent was assigned a weight based on its susceptibility to the danger, which was classified into four classifications. Exploratory regression analysis showed that the existing land use is the main factor influencing flood susceptibility. For the GIS domain, a total of 31 models were built using exploratory regression. Model number 31 was found to be the best fit model, having the highest Adjusted R2 value of 0.8 and the lowest Akaike's Information criterion value of 1536.8. The spatial autocorrelation tool's Z score and p-value for the standard residuals are, respectively, 0.7 and 0.4, indicating that they were neither clustered nor scattered. The geographic breadth of flood susceptibility and risk is thoroughly examined in this paper, as is the significance of spatial planning in the Awash basin.


Assuntos
Inundações , Sistemas de Informação Geográfica , Análise Espacial , Rios , Solo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36011960

RESUMO

The problem of shortage in freshwater resources in many countries around the world has led to the use of unconventional water resources such as treated wastewater and agricultural drains water to bridge the gap between the demand and supply. However, the open nature of most agricultural drains and the spread of population cumulation around them has made them vulnerable to many organic and inorganic pollutants. One of the artificial methods used to enhance the self-purification process in polluted streams is submerged biofilters (SB). However, most of the previous studies focused on the efficiency of the biofilter to remove the pollutants, and there is a lack of studies on hydraulic changes. This study aims to assess the hydraulic effects of the submerged biofilter of star-shaped plastic media on water streams and develop a mathematical formula that could predict such effects. For this purpose, an experimental study was conducted with 60 total runs (30 for flow through biofilter and 30 for flow over biofilter), and dimensional analyses with multi-linear regression analysis were used to correlate different parameters that affect the flow through and over the biofilter. The mathematical relationships were developed to determine the changes in the upstream water level and that heading up in streams due to the use of the biofilter for both cases of flow. The results of the new formulas are very close to the experimental results, with (R2 = 0.89) for flow through the biofilter and (R2 = 0.993) for the flow over biofilter. In addition, the results were very close to other developed equations. The developed formulas were used to predict the upstream water depth (h1) by knowing the discharge (Q), length (L), and width (B) of the biofilter.


Assuntos
Poluentes Ambientais , Rios , Filtração/métodos , Águas Residuárias , Água
5.
Artigo em Inglês | MEDLINE | ID: mdl-35627583

RESUMO

Water resources in arid and semi-arid regions are limited where the demands of agriculture, drinking and industry are increasing, especially in drought areas. These regions are subjected to climate changes (CC) that affect the watershed duration and water supplies. Estimations of flash flooding (FF) volume and discharge are required for future development to meet the water demands in these water scarcity regions. Moreover, FF in hot deserts is characterized by low duration, high velocity and peak discharge with a large volume of sediment. Today, the trends of flash flooding due to CC have become very dangerous and affect water harvesting volume and human life due to flooding hazards. The current study forecasts the peak discharges and volumes in the desert of El-Qaa plain in Southwestern Sinai, Egypt, for drought and wet seasons by studying the influence of recurrence intervals for 2, 5, 10, 25, 50 and 100 years. Watershed modeling system software (WMS) is used and applied for the current study area delineation. The results show that the predictions of peak discharges reached 0, 0.44, 45.72, 195.45, 365.91 and 575.30 cubic meters per s (m3 s-1) while the volumes reached 0, 23, 149.80, 2,896,241.40, 12,664,963.80 and 36,681,492.60 cubic meters (m3) for 2, 5, 10, 25, 50 and 100 years, respectively, which are precipitation depths of 15.20, 35.30, 50.60, 70.70, 85.90 and 101 mm, respectively. Additionally, the average annual precipitation reached 13.37 mm, with peak flow and volume reaching 0 m3 s-1 where all of water harvesting returned losses. Moreover, future charts and equations were developed to estimate the peak flow and volume, which are useful for future rainwater harvesting and the design of protection against flooding hazards in drought regions due to CC for dry and wet seasons. This study provides relevant information for hazard and risk assessment for FF in hot desert regions. The study recommends investigating the impact of recurrence intervals on sediment transport in these regions.


Assuntos
Inundações , Abastecimento de Água , Mudança Climática , Clima Desértico , Humanos , Recursos Hídricos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34886075

RESUMO

Water scarcity is one of the most serious problems facing many countries. In addition, water pollution could lose more water. A submerged biofilter (SB) is used to enhance the self-purification process in polluted streams. However, most previous studies have focused on the efficiency of SB to remove pollutants and there is a lack of studies investigating the hydraulic changes in streams. The current paper aimed to study the hydraulic effects of SB on the flow behavior in streams and how to improve it. An empirical equation for determining the flow rate through SB was developed. Different cases were studied to improve the hydraulic effects resulting from the use of SB. The effect of increasing SB length was tested using different SB lengths. The results showed that increasing the length increased the upstream water depth (h1) and relative heading up (h1/h2). In the second case, comparison between continuous and fragmented SB was tested. The results showed that a fragmented biofilter increased the upstream water depth and the relative heading up. Case three tested the effect of SB height. Different SB heights were tested with a fixed length and constant flow rate. The results revealed that the upstream water depth and relative heading up decreased when the biofilter height decreased. Case four tested the effect of SB with a fixed volume and constant flow rate. In this case, the length and height of SB were changed where the volume was fixed. The results showed that the relative heading up decreased when the SB height decreased and the length increased, which revealed that the SB height can improve the hydraulic impacts. Finally, the use of SB to improve the water quality in polluted streams led to an increase of the relative heading up, which can be reduced by decreasing the height of SB.


Assuntos
Rios , Qualidade da Água , Poluição da Água/prevenção & controle
7.
Artigo em Inglês | MEDLINE | ID: mdl-34299934

RESUMO

This study aims to investigate the impact of using untreated wastewater in irrigation. Different scenarios of management were applied by mixing it with treated wastewater or freshwater on groundwater quality. A hypothetical case study is presented. The numerical model of MODFLOW is used in the simulation by applying four stages (21 scenarios) including: different values of pumping rates, changing wastewater recharge rates, and a combination of the previous scenarios. Additionally, protection scenario for groundwater was applied by using different values of mixing of freshwater with wastewater. The simulation was carried out for the contamination of Chemical Oxygen Demand COD and the concentration reached 48.6 ppm at a depth of 25 m and 19.41 ppm at a depth of 50 m in the base case. The results showed a negative impact on groundwater quality had occurred due to increasing the pumping rates, wastewater recharge rates, and combination between two scenarios, which led to an increase of the contaminants in the aquifers. However, positive protection effects occurred due to mixing the wastewater with treated wastewater. The results of COD concentration in groundwater using treated wastewater reached 81.82, 77.88, 74.03, 70.12, and 66.15 ppm at a depth of 25 m and 53.53, 50.95, 48.43, 45.87, and 43.28 ppm at a depth of 50 m, at concentrations of 93, 88.52, 84.14, 79.7, and 75.19 ppm with constant pumping and recharge rates of 4320 m3/d and 547.5 mm/year, respectively. The using of treated wastewater could improve the groundwater quality to be used in the irrigation process and help to minimize groundwater contamination. Moreover, the abstraction of the groundwater should be optimized, and the qualities of wastewater should be constrained in agriculture to protect the groundwater quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Clima Desértico , Monitoramento Ambiental , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-33333761

RESUMO

Intensive agriculture requires increasing application of fertilizers in order to sustain food production. Improper use of these substances in combination with increasing seawater intrusion results in long-term and nonpoint soil and groundwater contamination. In this work, a 3-D groundwater and solute transport numerical model was created to simulate the effect of excessive fertilizers application along the Bahr El Baqar drain system, in the eastern Nile Delta, Egypt. The geotechnical properties of the soils, hydrologic parameters, and unconfined compressive strength were determined at different sites and used as input parameters for the model. Model results showed that silty clay soils are able to contain the contaminations and preserve the groundwater quality. Nevertheless, sandy soils primarily located at the beginning of the Bahr El Baqar drain allow leakage of fertilizers to the groundwater. Thus, fertilizer application should be properly managed in the top sandy layers to protect the groundwater and soil, as increasing aquifer by excess irrigation water increased the groundwater contamination in confined layers due to the high value of cumulative salt for the current situation while the unconfined zone decreased groundwater and soil contamination. A mass transport 3-D multi-species (MT3D) model was set to identify the optimal measure to tackle soil and groundwater contamination along the Bahr El-Baqar drain system. A potential increase of the abstraction rates in the study area has a positive impact in reducing the transfer of fertilizer contamination to groundwater while it has a negative impact for soil contamination. The scenario analysis further indicated that the installation of a drainage network decreases the groundwater and soil contamination. Both solutions are potentially effective for protection against nonpoint contamination along the Bahr El Baqar drain system. However, a more sustainable management approach of fertilizer application is needed to adequately protect the receptors located further downstream in the Nile Delta.


Assuntos
Fertilizantes , Água Subterrânea , Agricultura , Egito , Fertilizantes/análise , Solo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31683789

RESUMO

A digital elevation model (DEM) is a digital model or 3D representation of a terrain's surface. There are many methods to create DEM such as LiDAR, stereo photogrammetry and topographic maps. DEMs are very important for many applications such as extracting terrain parameters for geomorphology and modeling water flow for hydrology or mass movement. A number of websites are available to provide DEM such as SRTM, GTOPO30 and ASTER GDEM but their accuracy differs from one to another and also selecting a small DEM size (high resolution) gives accurate information, but the analysis takes long time. This paper aims to analyze the impact of using different available DEMs on watershed geomorphological properties on order to provide guidelines for users to select the most suitable DEM that obtain an accurate analysis in less time. Three programs; watershed modeling systems: WMS, Global Mapper and Google Earth were used in this study. Three case studies were studied to check the accuracy of these models and select the most accurate one for application. Satellite images downloaded from Google Earth were used as a guide reference for the comparison due to their accuracy and high resolution. The results indicated that the SRTM model was more accurate (95%) for all case studies according to our comparison between its delineation and satellite images. ASTER GDEM is the second most accurate model with an accuracy of 87%, the GTOPO30's accuracy is 80%.


Assuntos
Conservação dos Recursos Naturais/métodos , Confiabilidade dos Dados , Monitoramento Ambiental/métodos , Hidrologia/métodos , Topografia de Moiré , Imagens de Satélites , Egito , Modelos Teóricos
10.
Water Sci Technol ; 79(12): 2407-2416, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31411595

RESUMO

Urban hydrology was created in order to improve methods of managing the runoff of precipitation in towns and protect them from flooding while also protecting public health and environment. The essence of a future solution consists in finding an acceptable compromise of an alternative solution for draining rainwater from a territory. The content of this work is a study focused on resolving the percolation of water from surface runoff and the confrontation between a field test, laboratory analysis, and numerical analysis. By confronting and subsequently proposing conditions for percolation, documents will be created for making urban drainage better and more efficient. The reason for the origin of the subject work follows from the insufficient information on infiltration systems in Slovak technical standards and, likewise, the lack of support for the percolation of water from surface runoff. This work points out the approaches, principles, and fundamentals of a proposal for percolation. The aim of the work is distribution of scientific knowledge in the field of research and solutions for the percolation of water from surface runoff, with emphasis placed on the retention capacity of the selected territory and the intensity of precipitation. A geological study (orientational, detailed or supplementary) must always be conducted with any decision on rainwater percolation in a certain locality. Its range is dependent on the difficulty and type of construction. The preliminary study of areal condition should be focused on detailed engineering-geological and hydrological information. After this work, it is concluded that the percolation of rainwater in urban areas with suitable hydrogeological condition is an effective rainwater management technology as well as protection to congestion of sewer systems.


Assuntos
Chuva , Cidades , Hidrologia , Eliminação de Resíduos Líquidos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...