Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(5-1): 054129, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37328979

RESUMO

The Ornstein-Uhlenbeck process is interpreted as Brownian motion in a harmonic potential. This Gaussian Markov process has a bounded variance and admits a stationary probability distribution, in contrast to the standard Brownian motion. It also tends to a drift towards its mean function, and such a process is called mean reverting. Two examples of the generalized Ornstein-Uhlenbeck process are considered. In the first one, we study the Ornstein-Uhlenbeck process on a comb model, as an example of the harmonically bounded random motion in the topologically constrained geometry. The main dynamical characteristics (as the first and the second moments) and the probability density function are studied in the framework of both the Langevin stochastic equation and the Fokker-Planck equation. The second example is devoted to the study of the effects of stochastic resetting on the Ornstein-Uhlenbeck process, including stochastic resetting in the comb geometry. Here the nonequilibrium stationary state is the main question in task, where the two divergent forces, namely, the resetting and the drift towards the mean, lead to compelling results in the cases of both the Ornstein-Uhlenbeck process with resetting and its generalization on the two-dimensional comb structure.


Assuntos
Processos Estocásticos , Cadeias de Markov , Probabilidade
2.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832659

RESUMO

We introduce a refined way to diffusely explore complex networks with stochastic resetting where the resetting site is derived from node centrality measures. This approach differs from previous ones, since it not only allows the random walker with a certain probability to jump from the current node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that can reach all other nodes faster. Following this strategy, we consider the resetting site to be the geometric center, the node that minimizes the average travel time to all the other nodes. Using the established Markov chain theory, we calculate the Global Mean First Passage Time (GMFPT) to determine the search performance of the random walk with resetting for different resetting node candidates individually. Furthermore, we compare which nodes are better resetting node sites by comparing the GMFPT for each node. We study this approach for different topologies of generic and real-life networks. We show that, for directed networks extracted for real-life relationships, this centrality focused resetting can improve the search to a greater extent than for the generated undirected networks. This resetting to the center advocated here can minimize the average travel time to all other nodes in real networks as well. We also present a relationship between the longest shortest path (the diameter), the average node degree and the GMFPT when the starting node is the center. We show that, for undirected scale-free networks, stochastic resetting is effective only for networks that are extremely sparse with tree-like structures as they have larger diameters and smaller average node degrees. For directed networks, the resetting is beneficial even for networks that have loops. The numerical results are confirmed by analytic solutions. Our study demonstrates that the proposed random walk approach with resetting based on centrality measures reduces the memoryless search time for targets in the examined network topologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...