Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11501, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769393

RESUMO

We numerically study the spin-wave dynamics in an antidot lattice based on a Co/Pd multilayer structure with reduced perpendicular magnetic anisotropy at the edges of the antidots. This structure forms a magnonic crystal with a periodic antidot pattern and a periodic magnetization configuration consisting of out-of-plane magnetized bulk and in-plane magnetized rims. Our results show a different behavior of spin waves in the bulk and in the rims under varying out-of-plane external magnetic field strength, revealing complex spin-wave spectra and hybridizations between the modes of these two subsystems. A particularly strong magnon-magnon coupling, due to exchange interactions, is found between the fundamental bulk spin-wave mode and the second-order radial rim modes. However, the dynamical coupling between the spin-wave modes at low frequencies, involving the first-order radial rim modes, is masked by the changes in the static magnetization at the bulk-rim interface with magnetic field changes. The study expands the horizons of magnonic-crystal research by combining periodic structural patterning and non-collinear magnetization texture to achieve strong magnon-magnon coupling, highlighting the significant role of exchange interactions in the hybridization.

2.
J Phys Condens Matter ; 36(34)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813672

RESUMO

Single-crystal magnetic nanostructures with well-defined shapes attract lots of interest due to their potential applications in magnetic and spintronic devices. However, development of methods allowing controlling their mutual crystallographic and geometric orientation constitutes a significant scientific challenge. One of the routes for obtaining such structures is to grow the materials epitaxially on naturally-structured supports, such as vicinal surfaces of single-crystal substrates. Iron oxides are among the most well-known magnetic materials which, depending on the phase, may exhibit ferro/ferri- or antiferromagnetic ordering. We have grown iron oxide nanowires on a Cu(410) single-crystal substrate faceted with molecular oxygen. Scanning tunneling microscopy and low energy electron diffraction revealed that the oxide grows in the [111] direction, along the step edges of the substrate and rotated by ±15° with respect to the [010] direction of copper atomic terraces (so that the the growing elongated structures are orientated parallel to each other). Notably, x-ray photoelectron spectroscopy confirmed that the nanowires represent the ferrimagneticγ-Fe2O3(maghemite) iron oxide phase, while micromagnetic simulations indicated that the wires are single-domain, with the easy magnetization axis orientated in-plane and along the long axis of the wire.

3.
Adv Med Sci ; 68(2): 306-313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37708639

RESUMO

PURPOSE: Chronic pancreatitis (CP) is associated with serious complications and reduced quality of life. Kidney failure is a frequent complication of acute pancreatitis (AP), however limited information is available regarding the impact of CP on this condition. In the kidney, 9 aquaporins (AQPs) are expressed to maintain body water homeostasis and concentrate urine. The purpose of this study was to morphologically assess and analyze the location and expression of AQP2, AQP3 and AQP4 and determine whether CP affects renal structure and expression of AQPs in collecting duct (CD) principal cells. MATERIALS/METHODS: CP was induced in domestic pigs through intramuscular injections of cerulein (1 â€‹µg/kg â€‹bw/day for 6 days; n â€‹= â€‹5); pigs without CP (n â€‹= â€‹5) were used as a control group. Kidney samples were collected 6 weeks after the last injection and subjected to histological examination. Expression of AQPs was determined by immunohistochemistry and Western blot. RESULTS: The kidneys of animals with CP exhibited moderate changes, including glomerular enlargement, increased collagen percentage, numerous stromal erythrorrhages and inflammatory infiltrations compared to control group. Although the total abundance of AQP2 in the CD decreased in pigs after cerulein administration, the difference was not statistically significant. Expression of AQP3 and AQP4 was limited to the basolateral membrane of the CD cells. AQP4 abundance remained relatively stable in both groups, while AQP3 expression increased nearly three-fold in pigs with CP. CONCLUSION: This study identified morphological alterations and a statistically significant increase in the expression of renal AQP3 when pigs developed CP.


Assuntos
Aquaporina 2 , Pancreatite Crônica , Animais , Suínos , Aquaporina 2/metabolismo , Ceruletídeo/metabolismo , Doença Aguda , Qualidade de Vida , Aquaporina 3/metabolismo , Rim/metabolismo
4.
Sci Rep ; 13(1): 13572, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604926

RESUMO

Magnetic skyrmions, topological quasiparticles, are small stable magnetic textures that possess intriguing properties and potential for data storage applications. Hybrid nanostructures comprised of skyrmions and soft magnetic material can offer additional advantages for developing skyrmion-based spintronic and magnonic devices. We show that a Néel-type skyrmion confined within a nanodot placed on top of a ferromagnetic in-plane magnetized stripe produces a unique and compelling platform for exploring the mutual coupling between magnetization textures. The skyrmion induces an imprint upon the stripe, which, in turn, asymmetrically squeezes the skyrmion in the dot, increasing their size and the range of skyrmion stability at small values of Dzyaloshinskii-Moriya interaction, as well as introducing skyrmion bi-stability. Finally, by exploiting the properties of the skyrmion in a hybrid system, we demonstrate unlimited skyrmion transport along a racetrack, free of the skyrmion Hall effect.

5.
Nanoscale ; 15(31): 13094-13101, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498579

RESUMO

Controlling the vortex chirality in ferromagnetic nanodots and nanorings has been a topic of investigation for the last few years. Many control methods have been proposed and it has been found that the control is related to the breaking of the circular symmetry of the ring. In this paper, we present a theoretical study demonstrating the control of chirality in a symmetrical ferromagnetic nanoring by breaking the circular symmetry of the system by placing an elongated ferromagnetic nanoelement inside the ring. Here, the stray magnetostatic field exerted by the asymmetrically placed nanoelement determines the movement of the domain walls upon re-magnetization of the nanoring and the resulting chirality in remanence. Thus, the use of a nanoelement not only allows control of the chirality of the vortex state in an isolated ring, but also offers an opportunity to control magnetization in denser nanoring systems, as well as for spintronic and magnonic applications.

6.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685062

RESUMO

We demonstrated numerically the skyrmion formation in ultrathin nanodisks using a magnetic force microscopy tip. We found that the local magnetic field generated by the magnetic tip significantly affects the magnetization state of the nanodisks and leads to the formation of skyrmions. Experimentally, we confirmed the influence of the local field on the magnetization states of the disks. Micromagnetic simulations explain the evolution of the magnetic state during magnetic force microscopy scanning and confirm the possibility of skyrmion formation. The formation of the horseshoe magnetic domain is a key transition from random labyrinth domain states into the skyrmion state. We showed that the formation of skyrmions by the magnetic probe is a reliable and repetitive procedure. Our findings provide a simple solution for skyrmion formation in nanodisks.

7.
ACS Nano ; 14(12): 17184-17193, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33253544

RESUMO

Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.

8.
ACS Appl Mater Interfaces ; 11(19): 17654-17662, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31007012

RESUMO

Local modification of magnetic properties of nanoelements is a key to design future-generation magnonic devices in which information is carried and processed via spin waves. One of the biggest challenges here is to fabricate simple and miniature phase-controlling elements with broad tunability. Here, we successfully realize such spin-wave phase shifters upon a single nanogroove milled by a focused ion beam in a Co-Fe microsized magnonic waveguide. By varying the groove depth and the in-plane bias magnetic field, we continuously tune the spin-wave phase and experimentally evidence a complete phase inversion. The microscopic mechanism of the phase shift is based on the combined action of the nanogroove as a geometrical defect and the lower spin-wave group velocity in the waveguide under the groove where the magnetization is reduced due to the incorporation of Ga ions during the ion-beam milling. The proposed phase shifter can easily be on-chip integrated with spin-wave logic gates and other magnonic devices. Our findings are crucial for designing nanomagnonic circuits and for the development of spin-wave nano-optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...