Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495434

RESUMO

The Arctic ecosystems and their species are exposed to amplified climate warming and, in some regions, to rapidly developing economic activities. This study assesses, models, and maps the geographic patterns of community-level plant species richness in the Western Siberian Arctic and estimates the relative impact of environmental and anthropogenic factors driving these patterns. With our study, we aim at contributing toward conservation efforts for Arctic plant diversity in the Western Siberian Arctic. Western Siberian Arctic, Russia. We investigated the relative importance of environmental and anthropogenic predictors of community-level plant species richness in the Western Siberian Arctic using macroecological models trained with an extensive geobotanical dataset. We included vascular plants, mosses and lichens in our analysis, as non-vascular plants substantially contribute to species richness and ecosystem functions in the Arctic. We found that the mean community-level plant species richness in this vast Arctic region does not decrease with increasing latitude. Instead, we identified an increase in species richness from South-West to North-East, which can be well explained by environmental factors. We found that paleoclimatic factors exhibit higher explained deviance compared to contemporary climate predictors, potentially indicating a lasting impact of ancient climate on tundra plant species richness. We also show that the existing protected areas cover only a small fraction of the regions with highest species richness. Our results reveal complex spatial patterns of community-level species richness in the Western Siberian Arctic. We show that climatic factors such as temperature (including paleotemperature) and precipitation are the main drivers of plant species richness in this area, and the role of relief is clearly secondary. We suggest that while community-level plant species richness is mostly driven by environmental factors, an improved spatial sampling will be needed to robustly and more precisely assess the impact of human activities on community-level species richness patterns. Our approach and results can be used to design conservation strategies and to investigate drivers of plant species richness in other arctic regions.

2.
Ecol Evol ; 13(10): e10545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780086

RESUMO

Geobotanical subdivision of landcover is a baseline for many studies. The High-Low Arctic boundary is considered to be of fundamental natural importance. The wide application of different delimitation schemes in various ecological studies and climatic scenarios raises the following questions: (i) What are the common criteria to define the High and Low Arctic? (ii) Could human impact significantly change the distribution of the delimitation criteria? (iii) Is the widely accepted temperature criterion still relevant given ongoing climate change? and (iv) Could we locate the High-Low Arctic boundary by mapping these criteria derived from modern open remote sensing and climatic data? Researchers rely on common criteria for geobotanical delimitation of the Arctic. Unified circumpolar criteria are based on the structure of vegetation cover and climate, while regional specifics are reflected in the floral composition. However, the published delimitation schemes vary greatly. The disagreement in the location of geobotanical boundaries across the studies manifests in poorly comparable results. While maintaining the common principles of geobotanical subdivision, we derived the boundary between the High and Low Arctic using the most up-to-date field data and modern techniques: species distribution modeling, radar, thermal and optical satellite imagery processing, and climatic data analysis. The position of the High-Low Arctic boundary in Western Siberia was clarified and mapped. The new boundary is located 50-100 km further north compared to all the previously presented ones. Long-term anthropogenic press contributes to a change in the vegetation structure but does not noticeably affect key species ranges. A previously specified climatic criterion for the High-Low Arctic boundary accepted in scientific literature has not coincided with the boundary in Western Siberia for over 70 years. The High-Low Arctic boundary is distinctly reflected in biodiversity distribution. The presented approach is appropriate for accurate mapping of the High-Low Arctic boundary in the circumpolar extent.

3.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...