Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2755, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980845

RESUMO

Systems with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain walls. A change of the ordered state across a domain wall can lead to local non-bulk physical properties such as enhanced conductance or the promotion of unusual phases. Although highly desirable, controlled transfer of these properties between the bulk and the spatially confined walls is usually not possible. Here, we demonstrate this crossover by confining multiferroic Dy0.7Tb0.3FeO3 domains into multiferroic domain walls at an identified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from expanding the concept of multiferroic order, such interconversion can be key to addressing antiferromagnetic domain structures and topological singularities.

2.
Rev Sci Instrum ; 91(6): 063001, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611013

RESUMO

We present a compact setup for spin-, time-, and angle-resolved photoemission spectroscopy. A 10 kHz titanium sapphire laser system delivers pulses of 20 fs duration, which drive a high harmonic generation-based source for ultraviolet photons at 21 eV for photoemission. The same laser also excites the sample for pump-probe experiments. Emitted electrons pass through a hemispherical energy analyzer and a spin-filtering element. The latter is based on spin-polarized low-energy electron diffraction on an Au-passivated iridium crystal. The performance of the measurement system is discussed in terms of the resolution and efficiency of the spin filter, which are higher than those for Mott-based techniques.

3.
Phys Rev Lett ; 121(8): 087206, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192573

RESUMO

Prior to the development of pulsed lasers, one assigned a single local temperature to the lattice, the electron gas, and the spins. With the availability of ultrafast laser sources, one can now drive the temperature of these reservoirs out of equilibrium. Thus, the solid shows new internal degrees of freedom characterized by individual temperatures of the electron gas T_{e}, the lattice T_{l} and the spins T_{s}. We demonstrate an analogous behavior in the spin polarization of a ferromagnet in an ultrafast demagnetization experiment: At the Fermi energy, the polarization is reduced faster than at deeper in the valence band. Therefore, on the femtosecond time scale, the magnetization as a macroscopic quantity does not provide the full picture of the spin dynamics: The spin polarization separates into different parts similar to how the single temperature paradigm changed with the development of ultrafast lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...