Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5513, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951497

RESUMO

The second-order nonlinear Hall effect (NLHE) in non-centrosymmetric materials has recently drawn intense interest, since its inherent rectification could enable various device applications such as energy harvesting and wireless charging. However, previously reported NLHE systems normally suffer from relatively small Hall voltage outputs and/or low working temperatures. In this study, we report the observation of a pronounced NLHE in tellurium (Te) thin flakes at room temperature. Benefiting from the semiconductor nature of Te, the obtained nonlinear response can be readily enhanced through electrostatic gating, leading to a second-harmonic output at 300 K up to 2.8 mV. By utilizing such a giant NLHE, we further demonstrate the potential of Te as a wireless Hall rectifier within the radiofrequency range, which is manifested by the remarkable and tunable rectification effect also at room temperature. Extrinsic scattering is then revealed to be the dominant mechanism for the NLHE in Te, with symmetry breaking on the surface playing a key role. As a simple elemental semiconductor, Te provides an appealing platform to advance our understanding of nonlinear transport in solids and to develop NLHE-based electronic devices.

2.
Nat Commun ; 15(1): 6037, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39019892

RESUMO

In recent years, lightwave has stood out as an ultrafast, non-contact control knob for developing compact superconducting circuitry. However, the modulation efficiency is limited by the low photoresponse of superconductors. Plasmons, with the advantages of strong light-matter interaction, present a promising route to overcome the limitations. Here we achieve effective modulation of superconductivity in thin-film NbSe2 via near-field coupling to plasmons in gold nanoparticles. Upon resonant plasmon excitation, the superconductivity of NbSe2 is substantially suppressed. The modulation factor exceeds 40% at a photon flux of 9.36 × 1013 s-1mm-2, and the effect is significantly diminished for thicker NbSe2 samples. Our observations can be theoretically interpreted by invoking the non-equilibrium electron distribution in NbSe2 driven by the plasmon-associated evanescent field. Finally, a reversible plasmon-driven superconducting switch is realized in this system. These findings highlight plasmonic tailoring of quantum states as an innovative strategy for superconducting electronics.

3.
Nat Commun ; 15(1): 2410, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499551

RESUMO

The magnetic type-II Weyl semimetal (MWSM) Co3Sn2S2 has recently been found to host a variety of remarkable phenomena including surface Fermi-arcs, giant anomalous Hall effect, and negative flat band magnetism. However, the dynamic magnetic properties remain relatively unexplored. Here, we investigate the ultrafast spin dynamics of Co3Sn2S2 crystal using time-resolved magneto-optical Kerr effect and reflectivity spectroscopies. We observe a transient magnetization behavior, consisting of spin-flipping dominated fast demagnetization, slow demagnetization due to overall half-metallic electronic structures, and an unexpected ultrafast magnetization enhancement lasting hundreds of picoseconds upon femtosecond laser excitation. By combining temperature-, pump fluence-, and pump polarization-dependent measurements, we unambiguously demonstrate the correlation between the ultrafast magnetization enhancement and the Weyl nodes. Our theoretical modelling suggests that the excited electrons are spin-polarized when relaxing, leading to the enhanced spin-up density of states near the Fermi level and the consequently unusual magnetization enhancement. Our results reveal the unique role of the Weyl properties of Co3Sn2S2 in femtosecond laser-induced spin dynamics.

4.
Nat Commun ; 14(1): 1465, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927844

RESUMO

The distinguishing feature of a quantum system is interference arising from the wave mechanical nature of particles which is clearly central to macroscopic electronic properties. Here, we report the signature of quantum interference effect in inter-layer transport process. Via systematic magneto-drag experiments on graphene-based electronic double-layer systems, we observe low-field correction to the Coulomb-scattering-dominated inter-layer drag resistance in a wide range of temperature and carrier density, with its characteristics sensitive to the band topology of graphene layers. These observations can be attributed to a new type of quantum interference between drag processes, with the interference pathway comprising different carrier diffusion paths in the two constituent conductors. The emergence of such effect relies on the formation of superimposing planar diffusion paths, among which the impurity potentials from intermediate insulating spacer play an essential role. Our findings establish an ideal platform where the interplay between quantum interference and many-body interaction is essential.

5.
Phys Rev Lett ; 129(23): 237402, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563194

RESUMO

For quasiparticle systems, the control of the quasiparticle lifetime is an important goal, determining whether the related fascinating physics can be revealed in fundamental research and utilized in practical applications. Here, we use double-layer graphene with a boron nitride spacer as a model system to demonstrate that the lifetime of coupled Dirac plasmons can be remotely tuned by electric field-controlled damping pathways. Essentially, one of the graphene layers serves as an external damping amplifier whose efficiency can be controlled by the corresponding doping level. Through this damping switch, the damping rate of the plasmon can be actively tuned up to 1.7 fold. This Letter provides a prototype design to actively control the lifetime of graphene plasmons and also broadens our horizon for the damping control of other quasiparticle systems.

6.
Nat Commun ; 13(1): 5425, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109522

RESUMO

Elemental tellurium, conventionally recognized as a narrow bandgap semiconductor, has recently aroused research interests for exploiting Weyl physics. Chirality is a unique feature of Weyl cones and can support helicity-dependent photocurrent generation, known as circular photogalvanic effect. Here, we report circular photogalvanic effect with opposite signs at two different mid-infrared wavelengths which provides evidence of Weyl-related optical responses. These two different wavelengths correspond to two critical transitions relating to the bands of different Weyl cones and the sign of circular photogalvanic effect is determined by the chirality selection rules within certain Weyl cone and between two different Weyl cones. Further experimental evidences confirm the observed response is an intrinsic second-order process. With flexibly tunable bandgap and Fermi level, tellurium is established as an ideal semiconducting material to manipulate and explore chirality-related Weyl physics in both conduction and valence bands. These results are also directly applicable to helicity-sensitive optoelectronics devices.

7.
Nano Lett ; 22(16): 6767-6774, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35930622

RESUMO

Two-dimensional transition metal dichalcogenides possessing superconductivity and strong spin-orbit coupling exhibit high in-plane upper critical fields due to Ising pairing. Yet to date, whether such systems can become topological Ising superconductors remains to be materialized. Here we show that monolayered NbSe2 can be converted into Ising superconductors with nontrivial band topology via physical or chemical pressuring. Using first-principles calculations, we first demonstrate that a hydrostatic pressure higher than 2.5 GPa can induce a p-d band inversion, rendering nontrivial band topology to NbSe2. We then illustrate that Te-doping can function as chemical pressuring in inducing nontrivial topology in NbSe2-xTex with x ≥ 0.8, due to a larger atomic radius and stronger spin-orbit coupling of Te. We also evaluate the upper critical fields within both approaches, confirming the enhanced Ising superconductivity nature, as experimentally observed. Our findings may prove to be instrumental in material realization of topological Ising superconductivity in two-dimensional systems.

8.
Phys Rev Lett ; 128(9): 096601, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302793

RESUMO

For solids, the dispersionless flat band has long been recognized as an ideal platform for achieving intriguing quantum phases. However, experimental progress in revealing flat-band physics has so far been achieved mainly in artificially engineered systems represented as magic-angle twisted bilayer graphene. Here, we demonstrate the emergence of flat-band-dominated anomalous transport and magnetic behaviors in CoSn, a paramagnetic kagome-lattice compound. By combination of angle-resolved photoemission spectroscopy measurements and first-principles calculations, we reveal the existence of a kagome-lattice-derived flat band right around the Fermi level. Strikingly, the resistivity within the kagome lattice plane is more than one order of magnitude larger than the interplane one, in sharp contrast with conventional (quasi-) two-dimensional layered materials. Moreover, the magnetic susceptibility under the out-of-plane magnetic field is found to be much smaller as compared with the in-plane case, which is revealed to be arising from the introduction of a unique orbital diamagnetism. Systematic analyses reveal that these anomalous and giant anisotropies can be reasonably attributed to the unique properties of flat-band electrons, including large effective mass and self-localization of wave functions. Our results broaden the already fascinating flat-band physics, and demonstrate the feasibility of exploring them in natural solid-state materials in addition to artificial ones.

9.
Nano Lett ; 21(5): 2033-2039, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33619963

RESUMO

Graphene has been the subject of much research, with structural engineering frequently used to harness its various properties. In particular, the concepts of graphene origami and kirigami have inspired the design of quasi-three-dimensional graphene structures, which possess intriguing mechanical, electronic, and optical properties. However, accurate controlling the folding process remains a big challenge. Here, we report the discovery of spontaneous folding growth of graphene on the h-BN substrate via adopting a simple chemical vapor deposition method. Folded edges are formed when two stacked graphene layers share a joint edge at a growth temperature up to 1300 °C. Using first-principles density functional theory calculations, the bilayer graphene with folded edges is demonstrated to be more stable than that with open edges. Utilizing this novel growth mode, hexagram bilayer graphene containing entirely sealed edges is eventually realized. Our findings provide a route for designing graphene devices with a new folding dimension.

10.
Phys Rev Lett ; 126(5): 057701, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605741

RESUMO

Zero-bias conductance peaks (ZBCPs) can manifest a number of notable physical phenomena and thus provide critical characteristics to the underlying electronic systems. Here, we report observations of pronounced ZBCPs in hybrid junctions composed of an oxide heterostructure LaAlO_{3}/SrTiO_{3} and an elemental superconductor Nb, where the two-dimensional electron system (2DES) at the LaAlO_{3}/SrTiO_{3} interface is known to accommodate gate-tunable Rashba spin-orbit coupling (SOC). Remarkably, the ZBCPs exhibit a domelike dependence on the gate voltage, which correlates strongly with the nonmonotonic gate dependence of the Rashba SOC in the 2DES. The origin of the observed ZBCPs can be attributed to the reflectionless tunneling effect of electrons that undergo phase-coherent multiple Andreev reflection, and their gate dependence can be explained by the enhanced quantum coherence time of electrons in the 2DES with increased momentum separation due to SOC. We further demonstrate theoretically that, in the presence of a substantial proximity effect, the Rashba SOC can directly enhance the overall Andreev conductance in the 2DES-barrier-superconductor junctions. These findings not only highlight nontrivial interplay between electron spin and superconductivity revealed by ZBCPs, but also set forward the study of superconducting hybrid structures by means of controllable SOC, which has significant implications in various research fronts from superconducting spintronics to topological superconductivity.

11.
Adv Mater ; 32(36): e2002570, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715527

RESUMO

Metamaterials have gained much attention thanks to their extraordinary and intriguing optical properties beyond natural materials. However, universal high-resolution fabrications of 3D micro/nanometastructures with high-resolution remain a challenge. Here, a novel approach to fabricate sophisticated 3D micro/nanostructures with excellent robustness and precise controllability is demonstrated by simultaneously modulating of flexible resist stencils and basal molds. This method allows arbitrary manipulations of morphology, size, and orientation, as well as contact angles of the objects. Combined with a new alignment strategy of high-resolution, previously inaccessible architectures are fabricated with ultrahigh precision, leading to an excellent spectra response from the fabricated metastructures. This method provides a new possibility to realize true 3D metamaterial fabrications featuring high-resolution and direct-compatibility with broad planar lithography platforms.

12.
Proc Natl Acad Sci U S A ; 117(21): 11337-11343, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398373

RESUMO

The study of topological materials possessing nontrivial band structures enables exploitation of relativistic physics and development of a spectrum of intriguing physical phenomena. However, previous studies of Weyl physics have been limited exclusively to semimetals. Here, via systematic magnetotransport measurements, two representative topological transport signatures of Weyl physics, the negative longitudinal magnetoresistance and the planar Hall effect, are observed in the elemental semiconductor tellurium. More strikingly, logarithmically periodic oscillations in both the magnetoresistance and Hall data are revealed beyond the quantum limit and found to share similar characteristics with those observed in ZrTe5 and HfTe5 The log-periodic oscillations originate from the formation of two-body quasi-bound states formed between Weyl fermions and opposite charge centers, the energies of which constitute a geometric series that matches the general feature of discrete scale invariance (DSI). Our discovery reveals the topological nature of tellurium and further confirms the universality of DSI in topological materials. Moreover, introduction of Weyl physics into semiconductors to develop "Weyl semiconductors" provides an ideal platform for manipulating fundamental Weyl fermionic behaviors and for designing future topological devices.

13.
Nano Lett ; 20(2): 1396-1402, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31975602

RESUMO

The emergence of two-dimensional layered materials offers an excellent opportunity for the fabrication of double-layer electron systems that are in close proximity but electronically isolated. In this work, heterostructures consisting of one single-layer graphene (SLG) and one bilayer graphene (BLG) separated by an ultrathin hBN layer are successfully fabricated, enabling the experimental investigation of the interlayer frictional drag effect between massless and massive fermions. With varying carrier densities, a giant positive peak of drag response emerges at the double neutrality point, around which nonmonotonic temperature dependent behaviors of drag resistance are further observed. These observations can be attributed to the anticorrelations in the distributions of e-h puddles between layers. More importantly, as the system shifts toward the strong coupling regime, the carrier density dependence of drag resistance Rdrag shows a crossover from 1/n3 to 1/n2 for the density matched cases, which is a unique characteristic predicted for massless-massive fermion systems. Consequently, a generalized carrier dependent expression (1/(|nS| + |nB|)2) is obtained for the strong coupling regime, where nS and nB are the carrier densities of SLG and BLG, respectively. Our study provides insight into the electronic frictional effects between massless and massive fermions and thus will promote the investigations of interlayer interactions in hybrid structures hosting different types of carriers.

14.
Phys Rev Lett ; 122(25): 257601, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347866

RESUMO

Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential application in electronic devices. Here we find that a mechanical bending induced flexoelectricity significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas (2DEG) at the LaAlO_{3}/SrTiO_{3} (LAO/STO) heterostructure. Under variant bending states, both the carrier density and mobility of the 2DEG are changed according to the flexoelectric polarization direction, showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more research on the oxide interfacial flexoelectricity may be stimulated.

15.
Nano Lett ; 18(12): 7985-7990, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30451504

RESUMO

The control of optical properties by electric means is the key to optoelectronic applications. For atomically thin two-dimensional (2D) materials, the natural advantage lies in that the carrier doping could be readily controlled through the electric gating effect, possibly affecting the optical properties. Exploiting this advantage, here we report the gate switching of the ultrafast upconverted photoluminescence from monolayer graphene. The luminescence can be completely switched off by the Pauli-blocking of one-photon interband transition in graphene with an on/off ratio exceeding 100, which is remarkable compared to other 2D semiconductors and 3D bulk counterparts. The chemical potential and pump fluence dependences of the luminescence are nicely described by a two-temperature model, including both the hot carrier dynamics and carrier-optical phonon interaction. This gate switchable and background-free photoluminescence can open up new opportunities for graphene-based ultrafast optoelectronic applications.

16.
Phys Rev Lett ; 121(9): 096401, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230862

RESUMO

A flatband representing a highly degenerate and dispersionless manifold state of electrons may offer unique opportunities for the emergence of exotic quantum phases. To date, definitive experimental demonstrations of flatbands remain to be accomplished in realistic materials. Here, we present the first experimental observation of a striking flatband near the Fermi level in the layered Fe_{3}Sn_{2} crystal consisting of two Fe kagome lattices separated by a Sn spacing layer. The band flatness is attributed to the local destructive interferences of Bloch wave functions within the kagome lattices, as confirmed through theoretical calculations and modelings. We also establish high-temperature ferromagnetic ordering in the system and interpret the observed collective phenomenon as a consequence of the synergetic effect of electron correlation and the peculiar lattice geometry. Specifically, local spin moments formed by intramolecular exchange interaction are ferromagnetically coupled through a unique network of the hexagonal units in the kagome lattice. Our findings have important implications to exploit emergent flat-band physics in special lattice geometries.

17.
ACS Nano ; 12(9): 9355-9362, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30107116

RESUMO

The moiré pattern formed between a two-dimensional (2D) material and the substrate has played a crucial role in tuning the electronic structure of the 2D material. Here, by using scanning tunneling microscopy and spectroscopy, we found a moiré-pattern-dependent band gap and work function modulation in hexagonal boron nitride (hBN)/Cu(111) heterostructures, whose amplitudes increase with the moiré pattern wavelength. Moreover, the work function modulation shifts agree well with the conduction band edge shifts, indicating a spatially constant electron affinity for the hBN layer. Density functional theory calculations showed that these observations in hBN/Cu(111) heterostructures mainly originated from the hybridization of the N 3p z orbital and Cu 4s orbital in different atomic configurations. Our results show that the twist-angle dependence of moiré patterns in hBN/Cu(111) heterostructures can be used to tailor the electronic properties including band gap and work function.

18.
Nanoscale ; 10(34): 16314-16320, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30129966

RESUMO

The idea of squeezing optical field intensity into nanoscopic dimensions can be achieved through plasmon polaritons, where the prerequisite is to bridge the unmatched momentum of plasmons and free-space photons. Conventionally, complicated subwavelength structures or artificial dipole nanostructures are adopted to impart the necessary momentum for the plasmon excitation. In this work, we show that by using the near-field imaging technique, the plasmon can be launched directly from the edge of graphene lying on the high-κ oxide substrates when illuminated by an infrared light. In addition, we show that such an edge-excited mode can be remarkably tailored by changing the angle between the graphene edge and the incident light field. Further theoretical analysis reveals the strength of the edge-excited mode and its superposition with a tip-excited mode and an edge localized mode. We attribute our findings to the reduced Coulomb scattering and phonon scattering in graphene, allowing the edge-excited mode to be identified. The conceptual edge "antenna" is found to be a very convenient approach to initiate plasmons in two-dimensional systems, which opens up a compelling route for realising nanophotonic applications.

19.
Nanoscale ; 10(18): 8377-8384, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29701214

RESUMO

Silicon and graphene are two wonder materials, and their hybrid heterostructures are expected to be very interesting fundamentally and practically. In the present study, by adopting fast dry transfer and ultra-high vacuum annealing, atomically flat monolayer graphene is successfully prepared on the chemically active Si(111) substrate. More importantly, the graphene overlayer largely maintains its intrinsic electronic properties, as validated by the results of the energy-dependent electronic transparency, Dirac point observation and quantum coherence characteristics, and further confirmed by first-principles calculations. The intrinsic properties of graphene are retained up to 1030 K. The system of atomically flat and thermally stable graphene on a chemically active silicon surface with preserved inherent characteristics renders the graphene/silicon hybrid a promising system in the design of high-performance devices and the exploitation of interfacial topological quantum effects.

20.
Nano Lett ; 18(2): 1373-1378, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337565

RESUMO

Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...