Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893325

RESUMO

A novel metal-free synthesis of 3-substituted isocoumarins through a sequential O-acylation/Wittig reaction has been established. The readily accessible (2-carboxybenzyl)-triphenylphosphonium bromide and diverse chlorides produced various 1H-isochromen-1-one in the presence of triethylamine, employing sequential O-acylation and an intramolecular Wittig reaction of acid anhydride. Reactions using these facile conditions have exhibited high functional group tolerance and excellent yields (up to 90%). Moreover, the fluorescence properties of isocoumarin derivatives were evaluated at the theoretical and experimental levels to determine their potential application in fluorescent materials. These derivatives have good photoluminescence in THF with a large Stokes shift and an absolute fluorescence quantum yield of up to 14%.

2.
J Fluoresc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865061

RESUMO

In order to design organic small molecule fluorescent materials with multiple sensing, a bibranched -NH2 modified cyanostilbene derivative (AM) was synthesized. It exhibits solvent and aggregation-induced emission effects, with a solid-state quantum yield of 28%, which is seven times higher than that in THF. The synthesized sample AM demonstrated high sensitivity to trace water via a fluorescence "turn-off" response, achieving a low detection limit of 0.41 µM in THF and 0.80 µM in EtOH. AM also exhibits a "turn-off" response to picric acid, attributed to the photo-induced electron transfer effect it induces. The recognition of picric acid by AM demonstrates specificity and resistance to interference from nitro explosives, with a detection limit of 300 ppb and a linear relationship (R2 = 0.9981) at the range of 0-4 equivalents AM. Such acid recognition can facilitate the design of qualitative test papers and safety inks. Additionally, AM can function as a temperature sensor with a linear relationship (R2 = 0.9976) within the temperature range of 25-110 °C. Leveraging these unique characteristics, a series of methods were proposed for the direct quantitative determination of trace water in nonaqueous solvents, picric acid, and temperature.

3.
Chemistry ; 30(27): e202400296, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427538

RESUMO

Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.

4.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542890

RESUMO

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Assuntos
Cobre , Compostos Organofosforados , Oxidiazóis , Cobre/química , Oxidiazóis/química , Aminas/química , Catálise , Estresse Oxidativo
5.
ACS Appl Mater Interfaces ; 15(37): 44212-44223, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696019

RESUMO

The development of high-performance self-powered sensors in advanced composites addresses the increasing demands of various fields such as aerospace, wearable electronics, healthcare devices, and the Internet-of-Things. Among different energy sources, the thermoelectric (TE) effect which converts ambient temperature gradients to electric energy is of particular interest. However, challenges remain on how to increase the power output as well as how to harvest thermal energy at the out-of-plane direction in high-performance fiber-reinforced composite laminates, greatly limiting the pace of advance in this evolving field. Herein, we utilize a temperature-induced self-folding process together with continuous carbon nanotube veils to overcome these two challenges simultaneously, achieving a high TE output (21 mV and 812 nW at a temperature difference of 17 °C only) in structural composites with the capability to harvest the thermal energy from out-of-plane direction. Real-time self-powered deformation and damage sensing is achieved in fabricated composite laminates based on a thermal gradient of 17 °C only, without the need of any external power supply, opening up new areas of autonomous self-powered sensing in high-performance applications based on TE materials.

6.
Mater Horiz ; 10(9): 3601-3609, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37323029

RESUMO

Carbon nanotubes (CNTs), with their combination of excellent electrical conductivity, Seebeck coefficient, mechanical robustness and environmental stability are highly desired as thermoelectric (TE) materials for a wide range of fields including Internet of Things, health monitoring and environmental remediation solutions. However, their high thermal conductivity (κ) is an obstacle to practical TE applications. Herein, we present a novel method to reduce the κ of CNT veils, by introducing defects, while preserving their Seebeck coefficient and electrical conductivity. Solid-state drawing of a CNT veil embedded within two polycarbonate films generates CNT veil fragments of reducing size with increasing draw ratio. A successive heat treatment, at above the polycarbonate glass-to-rubber transition temperature, spontaneously reconnects the CNT veils fragments electrically but not thermally. Stretching to a draw ratio of 1.5 and heat repairing at 170 °C leads to a dramatic 3.5-fold decrease in κ (from 46 to 13 W m-1 K-1), in contrast with a decrease in electrical conductivity of only 26% and an increase in Seebeck coefficient of 10%. To clarify the mechanism of reduction in thermal conductivity, a large-scale mesoscopic simulation of CNT veils under uniaxial stretching has also been used. This work shows that defect engineering can be a valuable strategy to optimize TE properties of CNT veils and, potentially, other thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...