Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673840

RESUMO

Sea cucumbers are widely known for their powerful regenerative abilities, which allow them to regenerate a complete digestive tract within a relatively short time following injury or autotomy. Recently, even though the histological changes and cellular events in the processes of intestinal regeneration have been extensively studied, the molecular machinery behind this faculty remains unclear. In this study, tandem mass tag (TMT)-based quantitation was utilized to investigate protein abundance changes during the process of intestine regeneration. Approximately 538, 445, 397, 1012, and 966 differential proteins (DEPs) were detected (p < 0.05) between the normal and 2, 7, 12, 20, and 28 dpe stages, respectively. These DEPs also mainly focus on pathways of cell proliferation and apoptosis, which were further validated by 5-Ethynyl-2'-deoxyuridine (EdU) or Tunel-based flow cytometry assay. These findings provide a reference for a comprehensive understanding of the regulatory mechanisms of various stages of intestinal regeneration and provide a foundation for subsequent research on changes in cell fate in echinoderms.


Assuntos
Apoptose , Proliferação de Células , Intestinos , Proteômica , Regeneração , Animais , Proteômica/métodos , Intestinos/fisiologia , Intestinos/citologia , Stichopus/metabolismo , Stichopus/fisiologia , Espectrometria de Massas em Tandem , Proteoma/metabolismo
2.
Fish Shellfish Immunol ; 141: 109073, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709179

RESUMO

Circular RNAs (circRNAs) function as immune regulators in many biological processes in mammals, while their function and underlying mechanisms in invertebrates are largely unexplored. In this study, the competing endogenous RNA (ceRNA) mechanism of circRNA that sponges miR-375 and thus regulates AjBAG2-mediated coelomocyte apoptosis was evaluated in Apostichopus japonicus. The results showed that circRNA254 (circ254) was significantly down-regulated in the intestines and coelomocytes after Vibrio splendidus challenge or Lipopolysaccharide exposure, which matched the RNA-seq results in A. japonicus within skin ulceration syndrome. Dual-luciferase and RNA FISH assays indicated that circ254 could directly combine with miR-375, in which circ254 possesses three binding sites of miR-375. Moreover, circ254 knockdown significantly promoted the coelomocyte apoptosis levels upon pathogen infection in vivo and in vitro. Furthermore, circ254 silencing could also down-regulate AjBAG2 expression and thereby promoting the levels of coelomocyte apoptosis levels and the expression of caspase 3, which the phenomenon could be reversed by treatment with miR-375 inhibitors. Taken together, our results confirmed that circ254 functions as a ceRNA of AjBAG2 by sponging miR-375, resulting in the inhibition of coelomocyte apoptosis in A. japonicus.

3.
Cell Prolif ; 56(2): e13351, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36263902

RESUMO

OBJECTIVES: The purpose of the study aims to understand the regeneration process and its cytology mechanism in economic echinoderms. MATERIALS AND METHODS: The intestine regeneration process of Apostichopus japonicus was investigated by immunohistochemistry and the cell proliferation was detected by immunofluorescence and flow cytometry. Fibroblast growth factor 4 of A. japonicus (AjFGF4) was screened by RNA-seq analysis and validated to regulate cell proliferation by siAjFGF4 and recombinant-AjFGF4 treatment. The binding and co-localization of AjFGF4 and AjFGFR2 were verified by Co-IP, GST-pull down, and immunofluorescence. Then, the AjFGF4-AjFGFR2-ERK-cell cycle axis was examined by western blot, immunofluorescence, and flow cytometry techniques. RESULTS: The mesentery was served as the epicenter of intestinal regeneration via activating cell proliferation and other cellular events. Mechanically, AjFGF4-mediated cell proliferation was dependent on the binding to its receptor AjFGFR2, and then triggered the conserved ERK-MAPK pathway but not JNK and p38 pathway. The activated ERK-MAPK subsequently mediated the expression of cell cycle regulatory proteins of CDK2, Cyclin A, and Cyclin B to promote cell proliferation. CONCLUSIONS: We provide the first functional evidence that AjFGF4-AjFGFR2-ERK-cell cycle axis mediated cell proliferation was the engine for mesentery-derived intestine regeneration in echinoderms.


Assuntos
Intestinos , Sistema de Sinalização das MAP Quinases , Ciclo Celular , Divisão Celular , Proliferação de Células , Mesentério
4.
Fish Shellfish Immunol ; 89: 393-402, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980915

RESUMO

In order to investigate the dynamic distribution of antigen in different tissues post vaccination, an absolute real-time quantitative PCR was employed to detect the amount of antigen in flounder (Paralichthys olivaceus) post intraperitoneal (i.p.) injection with three concentrations (107, 108, 109 CFU ml-1) of formalin-inactivated Edwardsiella tarda bacterin. The results showed that the amount of uptaken antigen quickly increased and then decreased in different tissues. The peak occurred first in the spleen and head kidney at 6-9 h after injection, and in the liver and blood at 9-15 h, then in the gill, intestine and skin at 15-24 h, finally in the muscle at 24-36 h. The amount of antigen was highest in the spleen and head kidney, followed by the blood, liver and gill, and lowest in the intestine, skin and muscle. Among the three concentration groups, the amount of antigen increased with the increasing concentration of the vaccine in the blood, liver, gill, intestine, skin and muscle, except for the spleen and head kidney, in which more antigens were found in the 108 CFU ml-1 group than that in 109 CFU ml-1 group. Moreover, IIFA and western blotting was performed to examine the tissue distribution of antigen at 9 h after vaccination with 108 CFU ml-1 formalin-inactivated E. tarda. The bacteria were mainly observed in the spleen and head kidney, then the liver, gill and blood, and least in the intestine, skin and muscle, which was roughly in accordance with the results of absolute qPCR. Furthermore, the expressions of CD4-1, MHC IIα, CD8α and MHC Iα in different tissues were detected by RT-qPCR, and the expression levels of these genes were highest in the spleen and head kidney, then in the blood, gill, liver, and lowest in the intestine, skin and muscle. All these results provided useful information for dynamic transportation of antigen uptake post vaccination, and also deepened the understanding of immune response to the injection vaccination.


Assuntos
Vacinas Bacterianas/administração & dosagem , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Linguados , Vacinação/veterinária , Animais , Edwardsiella tarda/efeitos dos fármacos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Doenças dos Peixes/imunologia , Formaldeído/farmacologia , Vacinas de Produtos Inativados/administração & dosagem
5.
Vet Immunol Immunopathol ; 199: 53-60, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29678230

RESUMO

Intramuscular (i.m.) injection is one of the common delivery methods of vaccination in aquaculture, which could induce an ideal immune protection to fish. In the present study, the olive flounders (Paralichthys olivaceus) were injected intramuscularly with 200 µl of three concentrations of formalin-inactivated Edwardsiella tarda bacterin (107, 108, 109 CFU ml-1) to investigate the transportation and dynamic distribution of antigen uptake in tissues by absolute real-time quantitative PCR (qPCR). The amount of uptaken antigen increased firstly, and then decreased. The peak occurred first in the blood at 6-9 h after i.m. injection, and in the spleen and head kidney at 9-15 h, then in the liver, gill and muscle at 15-24 h, finally in the skin and intestine at 36 h. The amount of uptaken antigen was highest in the head kidney, followed by in the spleen, blood, gill, and liver, and lowest in the muscle, skin and intestine. Among the three dose groups, the amount of uptaken antigen in all tested tissues became higher with the increasing dose of injected bacterin. Moreover, the tissue distribution of antigen uptake was investigated by indirect immunofluorescence assay (IIFA) at 15 h after i.m. injection with 200 µl of 108 CFU ml-1E. tarda bacterin. The distribution of antigen was mainly observed in the head kidney, then in the spleen, blood, liver, gill and muscle, and least in the skin and intestine, which correlated with the results of absolute qPCR detection. Furthermore, the expression levels of MHC Iα, MHC IIα, CD4-1 and CD8α were detected by RT-qPCR. The expression of these four genes peaked highest in the head kidney, followed by in the spleen, liver, blood and gill, and lowest in the muscle, skin and intestine, and the levels increased in parallel with the increasing dose of injected vaccine. All these results provided an important insight into the dynamic transportation of antigen uptake, and also deepened the understanding of immune response to the i.m. injection.


Assuntos
Edwardsiella tarda , Infecções por Enterobacteriaceae/veterinária , Linguado/microbiologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/metabolismo , Edwardsiella tarda/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Linguado/imunologia , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Formaldeído/farmacologia , Injeções Intramusculares/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...