Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894402

RESUMO

Autonomous driving systems for unmanned ground vehicles (UGV) operating in enclosed environments strongly rely on LiDAR localization with a prior map. Precise initial pose estimation is critical during system startup or when tracking is lost, ensuring safe UGV operation. Existing LiDAR-based place recognition methods often suffer from reduced accuracy due to only matching descriptors from individual LiDAR keyframes. This paper proposes a multi-frame descriptor-matching approach based on the hidden Markov model (HMM) to address this issue. This method enhances the place recognition accuracy and robustness by leveraging information from multiple frames. Experimental results from the KITTI dataset demonstrate that the proposed method significantly enhances the place recognition performance compared with the scan context-based single-frame descriptor-matching approach, with an average performance improvement of 5.8% and with a maximum improvement of 15.3%.

2.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430608

RESUMO

Unmanned aerial vehicles (UAVs) can be used to relay sensing information and computational workloads from ground users (GUs) to a remote base station (RBS) for further processing. In this paper, we employ multiple UAVs to assist with the collection of sensing information in a terrestrial wireless sensor network. All of the information collected by the UAVs can be forwarded to the RBS. We aim to improve the energy efficiency for sensing-data collection and transmission by optimizing UAV trajectory, scheduling, and access-control strategies. Considering a time-slotted frame structure, UAV flight, sensing, and information-forwarding sub-slots are confined to each time slot. This motivates the trade-off study between UAV access-control and trajectory planning. More sensing data in one time slot will take up more UAV buffer space and require a longer transmission time for information forwarding. We solve this problem by a multi-agent deep reinforcement learning approach that takes into consideration a dynamic network environment with uncertain information about the GU spatial distribution and traffic demands. We further devise a hierarchical learning framework with reduced action and state spaces to improve the learning efficiency by exploiting the distributed structure of the UAV-assisted wireless sensor network. Simulation results show that UAV trajectory planning with access control can significantly improve UAV energy efficiency. The hierarchical learning method is more stable in learning and can also achieve higher sensing performance.

3.
Opt Express ; 24(25): 28613-28624, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958505

RESUMO

This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...