Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(2): 48, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345612

RESUMO

KEY MESSAGE: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.


Assuntos
Solo , Triticum , Triticum/metabolismo , Mutação , Mapeamento Cromossômico , Água/metabolismo , Raízes de Plantas/genética
2.
Front Genet ; 14: 1241201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560386

RESUMO

Polyploidization plays important roles in the evolution and breeding of the common wheat. Aegilops tauschii, the D-genome progenitor of the common wheat, provides a valuable pool of resistance genes to multiple diseases. Extensive studies focus on the exploration of these genes for wheat improvement. However, few studies have unveiled alternations on genome-wide expression pattern and histone modifications induced by whole-genome doubling (WGD) process. In this study, we conducted transcriptome analysis for the diploid and tetraploid Ae. taushcii lines using the leaf and root tissues. Both lines tend to display similar tissue-specific pattern. Interestingly, we found that TEs located in genic regions were depleted of the repressive histone mark H3K27me3, whereas their adjacent chromatin was enriched with H3K27me3. The tetraploid line exhibited higher levels of H3K27me3 in those regions than the diploid line, particularly for genic regions associated with TEs of the long interspersed nuclear elements (LINEs), CACTA, PIF/Harbinger, Tc1/Mariner and unclassed DNA transposon. Surprisingly, the expression levels of these TEs cognate genes were negatively associated with the levels of H3K27me3 between the tetraploid and diploid lines, suggesting the five types of TEs located within genic regions might be involved in the regulation of the ploidy-related gene expression, possibly through differential enrichment of H3K27me3 in the genic regions. These findings will help to understand the potential role of specific types of TEs on transcription in response to WGD.

3.
Hortic Res ; 10(3): uhad017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968186

RESUMO

Polyploid plants typically display advantages on some agronomically important traits over their diploid counterparts. Extensive studies have shown genetic, transcriptomic, and epigenetic dynamics upon polyploidization in multiple plant species. However, few studies have unveiled those alternations imposed only by ploidy level, without any interference from heterozygosity. Cultivated potato is highly heterozygous. Thus, in this study, we developed two homozygous autotetraploid lines and one homozygous diploid line in parallel from a homozygous diploid potato. We confirmed their ploidy levels using chloroplast counting and karyotyping. Oligo-FISH and genome re-sequencing validated that these potato lines are nearly homozygous. We investigated variations in phenotypes, transcription, and histone modifications between two ploidies. Both autotetraploid lines produced larger but fewer tubers than the diploid line. Interestingly, each autotetraploid line displayed ploidy-related differential expression for various genes. We also discovered a genome-wide enrichment of H3K27ac in genic regions upon whole-genome doubling (WGD). However, such enrichment was not associated with the differential gene expression between two ploidies. The tetraploid lines may exhibit better resistance to cold-induced sweetening (CIS) than the diploid line in tubers, potentially regulated through the expression of CIS-related key genes, which seems to be associated with the levels of H3K4me3 in cold-stored tubers. These findings will help to understand the impacts of autotetraploidization on dynamics of phenotypes, transcription, and histone modifications, as well as on CIS-related genes in response to cold storage.

4.
BMC Plant Biol ; 20(1): 97, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131739

RESUMO

BACKGROUND: In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS: For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS: Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.


Assuntos
Aneuploidia , Poliploidia , Transcriptoma , Triticum/genética , Dosagem de Genes
5.
Biochim Biophys Acta Gen Subj ; 1861(12): 3246-3256, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943299

RESUMO

BACKGROUND: Telomeric repeat-containing RNA (TERRA) is a large non-coding RNA in mammalian cells, which forms an integral component of telomeric heterochromatin. TERRA can bind to an allosteric site of telomeric repeat factor 2 (TRF2), a key component of Shelterin that protect chromosome termini. Both TERRA and TRF2 have been recognized as promising new therapeutic targets for cancer treatment. METHODS: Our methods include FRET assay, SPR, CD, microscale thermophoresis (MST), enzyme-linked immunosorbent assay (ELISA), chromatin immunoprecipitation (ChIP), colony formation assays, Western blot, immunofluorescence, cell cycle arrest and apoptosis detection, and xCELLigence real-time cell analysis (RTCA). RESULTS: In our routine screening of small molecule libraries, we found that a Quindoline derivative, CK1-14 could bind to and stabilize TERRA G-quadruplex structure, which could bind more tightly with an allosteric site of a telomeric binding protein TRF2, resulting in dissociation of TRF2 from telomeric DNA. Further in cellular studies indicated that the above effect of CK1-14 on TERRA G-quadruplex could activate DNA-damage response and cause cell cycle arrest, resulting in inhibition of U2OS cell proliferation and causing cell apoptosis. CONCLUSIONS: Our mechanistic studies indicated that interaction of CK1-14 with TERRA induces telomeric DNA-damage response in U2OS cancer cells through inhibition of TRF2. CK1-14 could be further developed as a promising lead compound targeting telomere for cancer treatment. GENERAL SIGNIFICANCE: Our present study provides the first evidence that allosteric modulation of TRF2 by TERRA G-quadruplex with a binding ligand could become a promising new strategy for cancer treatment especially for ALT tumor cells.


Assuntos
Alcaloides/farmacologia , Dano ao DNA , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Quinolinas/farmacologia , RNA Longo não Codificante/metabolismo , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Alcaloides/metabolismo , Regulação Alostérica , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quadruplex G , Humanos , Indóis/metabolismo , Neoplasias/genética , Neoplasias/patologia , Quinolinas/metabolismo
6.
J Med Chem ; 60(13): 5407-5423, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28514170

RESUMO

The specificity of nucleic acids' binders is crucial for developing this kind of drug, especially for novel G-quadruplexes' binders. Quindoline derivatives have been developed as G-quadruplex stabilizers with good interactive activities. In order to improve the selectivity and binding affinity of quindoline derivatives as c-myc G-quadruplex binding ligands, novel triazole containing benzofuroquinoline derivatives (T-BFQs) were designed and synthesized by using the 1,3-dipolar cycloaddition of a series of alkyne and azide building blocks. The selectivity toward c-myc G-quadruplex DNA of these novel T-BFQs was significantly improved, together with an obvious increase on binding affinity. Further cellular and in vivo experiments indicated that the T-BFQs showed inhibitory activity on tumor cells' proliferation, presumably through the down-regulation of transcription of c-myc gene. Our findings broadened the modification strategies of specific G-quadruplex stabilizers.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Quadruplex G/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Quinolonas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Química Click , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Termodinâmica , Triazóis/química
7.
BMC Genomics ; 18(1): 149, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187716

RESUMO

BACKGROUND: The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. RESULTS: The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. CONCLUSIONS: The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat.


Assuntos
Genoma de Planta/genética , Hibridização Genética , Poliploidia , Homologia de Sequência do Ácido Nucleico , Triticum/genética , Regulação para Baixo/genética , Fenótipo , RNA Mensageiro/genética
8.
PLoS One ; 11(9): e0162847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611704

RESUMO

Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the 'Chinese Spring' common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence 'Chinese Spring' genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the 'Chinese Spring' bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses.


Assuntos
Pão , Cromossomos de Plantas/genética , Poliploidia , Triticum/genética , Sequência de Bases , Primers do DNA/metabolismo , Marcadores Genéticos , Modelos Genéticos , Reação em Cadeia da Polimerase
9.
Biochem Biophys Rep ; 5: 346-352, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955841

RESUMO

At present, wt1, a Wilms' tumor suppressor gene, is recognized as a critical regulator of tumorigenesis and a potential therapeutic target. WT1 shows the ability to regulate the transcription of bcl-2 by binding to a GC-rich region in the promoter, which can then fold into a special DNA secondary structure called the G-quadruplex. This function merits the exploration of the effect of a G-quadruplex ligand on the binding and subsequent regulation of WT1 on the bcl-2 promoter. In the present study, WT1 was found to bind to the double strand containing the G-quadruplex-forming sequence of the bcl-2 promoter. However, the G-quadruplex ligand SYUIQ-FM05 effectively blocked this binding by interacting with the GC-rich sequence. Our new findings are significant in the exploration of new strategies to block WT1's transcriptional regulation for cancer-cell treatment.

11.
G3 (Bethesda) ; 4(10): 1943-53, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128436

RESUMO

Meiotic nonreduction resulting in unreduced gametes is thought to be the predominant mechanism underlying allopolyploid formation in plants. Until now, however, its genetic base was largely unknown. The allohexaploid crop common wheat (Triticum aestivum L.), which originated from hybrids of T. turgidum L. with Aegilops tauschii Cosson, provides a model to address this issue. Our observations of meiosis in pollen mother cells from T. turgidum×Ae. tauschii hybrids indicated that first division restitution, which exhibited prolonged cell division during meiosis I, was responsible for unreduced gamete formation. A major quantitative trait locus (QTL) for this trait, named QTug.sau-3B, was detected on chromosome 3B in two T. turgidum×Ae. tauschii haploid populations. This QTL is situated between markers Xgwm285 and Xcfp1012 and covered a genetic distance of 1 cM in one population. QTug.sau-3B is a haploid-dependent QTL because it was not detected in doubled haploid populations. Comparative genome analysis indicated that this QTL was close to Ttam-3B, a collinear homolog of tam in wheat. Although the relationship between QTug.sau-3B and Ttam requires further study, high frequencies of unreduced gametes may be related to reduced expression of Ttam in wheat.


Assuntos
Locos de Características Quantitativas , Triticum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Hibridização Genômica Comparativa , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Meiose , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Alinhamento de Sequência
12.
Clin Lab ; 59(9-10): 985-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24273920

RESUMO

BACKGROUND: Low birth weight (LBW) might be a risk factor for acquiring lower respiratory tract infections (LRTIs) associated with disease related complications in early childhood. HFMD, a frequent viral infection in southern China, is a leading cause of lower respiratory tract infections in children. We analyzed whether LBW is a risk factor for children with HFMD to develop lower respiratory tract infections. METHODS: A total of 298 children with HFMD, admitted to a hospital in Qingyuan city, Guangdong province, were recruited. Demographic data and clinical parameters such as serum glucose level and inflammatory markers including peripheral white blood cell count, serum C-reactive protein, and erythrocyte sedimentation rate were routinely collected on admission. Birth weight data were derived from birth records. RESULTS: Mean birth weight (BW) was 167 g lower in patients with HFMD and LRTIs as compared to patients with solely HFMD (p = 0.022) and the frequency of birth weight below the tenth percentile was significantly higher in patients with HFMD and LRTIs (p = 0.002). CONCLUSIONS: The results of the study show that low birth weight is associated with a higher incidence of lower respiratory tract infections in young children with HFMD.


Assuntos
Doença de Mão, Pé e Boca/complicações , Recém-Nascido de Baixo Peso , Infecções Respiratórias/complicações , Biomarcadores/sangue , Glicemia/análise , Sedimentação Sanguínea , Proteína C-Reativa/análise , China/epidemiologia , Feminino , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Lactente , Recém-Nascido , Contagem de Leucócitos , Masculino , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...