Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 4387-4399, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297641

RESUMO

Tomography plays an important role in characterizing the three-dimensional structure of samples within specialized scenarios. In the paper, a masked attention network is presented to eliminate interference from different layers of the sample, substantially enhancing the resolution for photon-level single-pixel tomographic imaging. The simulation and experimental results have demonstrated that the axial resolution and lateral resolution of the imaging system can be improved by about 3 and 2 times respectively, with a sampling rate of 3.0 %. The scheme is expected to be seamlessly integrated into various tomography systems, which is conducive to promoting the tomographic imaging for biology, medicine, and materials science.

2.
RSC Adv ; 11(50): 31663-31674, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496834

RESUMO

Extension of the light absorption range and a reduction of the possibility of the photo-generated electron-hole pair recombination are the main tasks to break the bottleneck of the photocatalytic application of TiO2. In this paper, we systematically investigate the electronic and optical properties of Sc-doped, C-doped, and Sc/C-codoped TiO2 (101) surfaces using spin-polarized DFT+U calculations. The absorption coefficient of the Sc/C-codoped TiO2 (101) surfaces were enhanced the most compared with the other two doped systems in the high energy region of visible light, which can be attributed to the shallow impurity states. Furthermore, we studied the optical absorption properties with the change of the impurity concentration. The Sc/C-codoped TiO2 (101) surface with 5.56% impurity concentration exhibited optimal photocatalytic performance in the visible region. These results may be helpful for designing the high-performance of the photocatalysts by doping.

3.
Bioelectrochemistry ; 133: 107481, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088575

RESUMO

High-salt conditions reduce the efficiency of electricity generation and nitrogen removal in microbial fuel cells (MFCs). In this work, we propose a three-phase single-chamber MFC (TP-MFC) by setting up a phase with immobilized cells in a conventional bipolar single-chamber MFC (common MFC). Cells from Halomonas were used as the immobilized phase, because these cells secrete the compatible solute ectoine and exhibit simultaneous nitrification and denitrification (SND). This enhanced the efficiency of SND and subsequent electricity generation under high-salt conditions. The average voltage of TP-MFC generated during the stable period in the presence of 30 g/L NaCl was 439.3 mV, which was 55.2% higher than that generated in common MFC. In addition, the N-removal rate of TP-MFC at 72 h was 63.4%, which was 38.4% higher than that of common MFC. The 16S rRNA diversity analysis showed an improved abundance of Pseudomonas, Acinetobacter, Alcaligenes, and Halomonas in TP-MFC, indicating that the ectoine secreted by immobilized Halomonas conferred substantial salt-tolerance on the electrogenic bacteria growing in a high-salt environment. This paper establishes an efficient and convenient method for improving the salt tolerance of microbial flora in MFCs, which is of great significance for the application of MFCs in high-strength wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Halomonas/metabolismo , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Desnitrificação , Eletricidade , Desenho de Equipamento , Halomonas/citologia , Sais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...