Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10196-10205, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38526994

RESUMO

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

2.
ACS Appl Mater Interfaces ; 14(40): 45254-45262, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166239

RESUMO

Aluminum-ion batteries have garnered significant interest as a potentially safer and cheaper replacement for conventional lithium-ion batteries, offering a shorter charging time and denser storage capacity. Nonetheless, the progress in this field is considerably hampered by the limited availability of suitable cathode materials that can sustain the reversible intercalation of Al3+/[AlCl4]- ions, particularly after long cycles. Herein, we demonstrate that rechargeable Al batteries embedded with two-dimensional (2D) Nb2CTx MXene as a cathode material exhibit excellent capacity and exceptional long cyclic performance. We have successfully improved the initial electrochemical performance of Nb2CTx MXene after being properly delaminated to a single-layered microstructure and subjected to a post-synthesis calcining treatment. Compared to pristine Nb2CTx MXene, the Al battery embedded with the calcined Nb2CTx MXene cathode has, respectively, retained high capacities of 108 and 80 mAh g-1 after 500 cycles at current densities of 0.2 and 0.5 A g-1 in a wide voltage window (0.1-2.4 V). Noteworthily, the cyclic lifetime of Nb2CTx MXene was extended from ∼300 to >500 times after calcination. We reveal that attaining Nb2CTx nanosheets with a controllable d-spacing has promoted the migration of the [AlCl4]- and Al3+ ions in the MXene interlayers, leading to enhanced charge storage. Furthermore, we found out that the formation of niobium oxides and amorphous carbon after calcination probably benefits the electrochemical performance of Nb2CTx MXene electrode in Al batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...