Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 10032-10043, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563705

RESUMO

The controlled creation, selective exposure, and activation of more basal planes while simultaneously minimizing the generation and exposure of edge sites are crucial for accelerating methanol synthesis from CO2 hydrogenation over MoS2 catalysts but remain a bottleneck. Here, we report a facile method to fabricate heteronanotube catalysts with single-layer MoS2 coaxially encapsulating the carbon nanotubes (CNTs@MoS2) through host-guest chemistry. Inheriting the long tubular structure of CNTs, the grown MoS2 nanotubes exhibit significantly more basal planes than bulk MoS2 crystals. More importantly, the tubular curvature not only promotes strain and sulfur vacancy (Sv) generation but also preferentially exposes more in-plane Sv while limiting edge Sv exposure, which is conducive to methanol synthesis. Both the strain and layer number of MoS2 can be easily and finely adjusted by altering CNT diameter and quantity of precursors. Remarkably, CNTs@MoS2 with monolayer MoS2 and maximum strain displayed methanol selectivity of 78.1% and methanol space time yield of 1.6 g gMoS2-1 h-1 at 260 °C and GHSV of 24000 mL gcat.-1 h-1, representing the best results to date among Mo-based catalysts. This study provides prospects for novel catalyst design by synthesizing coaxial tubular heterostructure to create additional catalytic sites and ultimately enhance conversion and selectivity.

2.
Nat Commun ; 14(1): 5872, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735457

RESUMO

In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS2) were newly unveiled for CO2 hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS2 catalysts with fullerene-like structure and atomic copper (Cu/MoS2@SiO2). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO2) to MoS2 within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS2 can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS2@SiO2 exhibits stable specific methanol yield of 6.11 molMeOH molMo-1 h-1 with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO2 hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.

3.
Adv Sci (Weinh) ; 10(25): e2302663, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37377354

RESUMO

Bimetallic nanoparticle (NP) catalysts are widely used in many heterogeneous gas-based reactions because they often outperform their monometallic counterparts. During these reactions, NPs often undergo structural changes, which impact their catalytic activity. Despite the important role of the structure in the catalytic activity, many aspects of how a reactive gaseous environment affects the structure of bimetallic nanocatalysts are still lacking. Here, using gas-cell transmission electron microscopy (TEM), it is shown that during a CO oxidation reaction over PdCu alloy NPs, the selective oxidation of Cu causes the segregation of Cu and transforms the NPs into Pd-CuO NPs. The segregated NPs are very stable and have high activity for the conversion of CO into CO2 . Based on the observations, the segregation of Cu from Cu-based alloys during a redox reaction is likely to be general and may have a positive impact on the catalytic activity. Hence, it is believed that similar insights based on direct observation of the reactions under relevant reactive conditions are critical both for understanding and designing high-performance catalysts.

4.
ACS Appl Mater Interfaces ; 13(17): 20524-20538, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881838

RESUMO

Zeolites are one of the most commonly used materials in the chemical industry, acting as catalysts or catalyst supports in different applications. Recently, the synthesis and functionalization of hollow zeolites have attracted many research interests, owing to the unique advantages of their hollow morphology. In the development of more sustainable processes, the hollow zeolites are often endowed with additional stability, selectivity, and activity. Herein, we present a stepwise synthetic protocol to prepare a range of complex hollow ZSM-5 catalysts with catalytic nanoparticles. Solid ZSM-5 crystals were first synthesized from Stöber silica spheres. This solid ZSM-5 sample was then loaded with transition metals via the impregnation method. A subsequent hollowing process was carried out in hydrothermal conditions in which hollow ZSM-5 crystals with confined transition metals inside were synthesized. More specifically, after the encapsulation of transition metals inside hollow ZSM-5, two different approaches have been further devised to allow the deposition of noble metals into the interior cavities or onto the exterior surfaces of the hollow ZSM-5. The deposition of Pt on the exterior surface was carried out by mixing the hollow ZSM-5 sample with presynthesized Pt nanoparticles. Loading of Pd in the interior was achieved by the galvanic replacement reaction between the Pd ions and embedded transition metals inside the hollow ZSM-5 sample. The catalytic performance of these reactor-like nanocatalysts has been evaluated with hydrogenation reactions in both liquid and gas phases, and their compositional and structural merits have been illustrated. For the hollow ZSM-5 sample with Pd loaded inside, liquid-phase selective hydrogenation of styrene over 4-vinylbiphenyl has been achieved with the ZSM-5 shell acting as a molecular sieve. The deposition of Pt on the exterior has improved the C2-C4 product yield when tested for the gas-phase CO2 hydrogenation reaction.

5.
ACS Appl Mater Interfaces ; 13(17): 20501-20510, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891399

RESUMO

Cerium(IV) oxide (CeO2), or ceria, is one of the most abundant rare-earth materials that has been extensively investigated for its catalytic properties over the past two decades. However, due to the global scarcity and increasing cost of rare-earth materials, efficient utilization of this class of materials poses a challenging issue for the materials research community. Thus, this work is directed toward an exploration of making ultrathin hollow ceria or other rare-earth metal oxides and mixed rare-earth oxides in general. Such a hollow morphology appears to be attractive, especially when the thickness is trimmed to its limit, so that it can be viewed as a two-dimensional sheet of organized nanoscale crystallites, while remaining three-dimensional spatially. This ensures that both inner and outer shell surfaces can be better utilized in catalytic reactions if the polycrystalline sphere is further endowed with mesoporosity. Herein, we have devised our novel synthetic protocol for making ultrathin mesoporous hollow spheres of ceria or other desired rare-earth oxides with a tunable shell thickness in the region of 10 to 40 nm. Our ceria ultrathin hollow spheres are catalytically active and outperform other reported similar nanostructured ceria for the oxidation reaction of carbon monoxide in terms of fuller utilization of cerium. The versatility of this approach has also been extended to fabricating singular or multicomponent rare-earth metal oxides with the same ultrathin hollow morphology and structural uniformity. Therefore, this approach holds good promise for better utilization of rare-earth metal elements across their various technological applications, not ignoring nano-safety considerations.

6.
ACS Appl Mater Interfaces ; 12(45): 50324-50332, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33108167

RESUMO

A heterostructure combining mesoporous hollow spheres of N, P-doped carbon (meso-NPC) with ultrafine Co2NiOx nanoparticles has been synthesized as a highly active electrocatalyst, named meso-NPC/Co2NiOx. The meso-NPC hollow spheres were first fabricated via a novel nanocasting method using mesoporous SiO2 as the "mold" and the atomic ratio of P in the meso-NPC can be tuned by controlling the amount of one of the filling organics, etidronic acid. Because of the large surface area and abundant surface hydroxyls, the meso-NPC formed strong bonding with the Co2NiOx nanoparticles (<2 nm in size) loaded on it. Serving as an OER electrocatalyst, the heterogeneous meso-NPC/Co2NiOx shows great working enhancement compared to its single-component counterparts. Through further mechanism study by X-ray photoelectron spectroscopy, a strong effect of electron transfer is found from the Co2NiOx to the meso-NPC, which leads to increases in the oxidation state of transition metals (TMs). Most importantly, we also reveal that the increase in the amount of the P dopant in the meso-NPC/Co2NiOx system can efficiently facilitate this metal-to-support charge transfer, which also implies that the biphasic interaction between the Co2NiOx nanoparticles and the meso-NPC hollow spheres generates active catalytic sites of both TM-N-C and TM-P-C surface species.

7.
J Am Chem Soc ; 142(32): 13823-13832, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667195

RESUMO

Despite widespread use of heterogeneous Pd catalysts in Suzuki-Miyaura coupling reactions, detailed roles of Pd, especially the nature of its active species, are still a topic of controversial debate. While some studies showed an active surface of Pd nanoparticles or nanoclusters acting heterogeneously, others claimed soluble Pd species leached from the metallic Pd to be active species which are homogeneous in nature. Besides, within the homogeneous mechanism, how the Pd leaches and promotes the cross-coupling reaction is then another question that needs to be addressed. It could be envisioned that if the soluble Pd species and solid-phase Pd are physically separated, the mechanism of Suzuki-Miyaura coupling could then be confirmed through examining the catalytic activity in different reaction regions. Herein we use microporous Stöber silica as a membrane to separate the soluble Pd species from solid Pd and conduct size-selective reactions which allow the passage of leaching Pd species, but not of reactants or products larger than the membrane aperture. With this strategy, we have been able to differentiate the surface reaction from the solution cross-coupling. We find that the leached Pd species are the only genuine catalytic intermediate in the cross-coupling reactions. We also confirm that oxidative addition of aryl halides to the solid Pd leads to leaching of the soluble Pd species which is necessary to promote Suzuki-Miyaura reactions.

8.
ACS Appl Mater Interfaces ; 12(30): 33827-33837, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32627521

RESUMO

Suzuki reaction usually uses palladium (Pd) complexes to accommodate a wide range of substrates. In pursuing greener synthesis, immobilization of Pd complexes with various support materials has shown promising potential. Although this approach can give stable conversion, initially immobilized Pd ions are largely reduced to Pd0 aggregates and turned essentially into supported nanoparticles after use, which departs from its original intention of complex immobilization and thus hampers its activity. Herein, we immobilize noble metal ions into a spherical thiolated organosilica. This new type of catalysts can catalyze Suzuki reaction homogeneously via leaching out Pd ions and shuttling them back after the reaction. The excellent reusability attained can be attributed to minimalization of forming metallic palladium. Thus, the developed catalysts can be viewed as a two-way device to release and to restore metal ions for homogeneous catalysis.

9.
ACS Appl Mater Interfaces ; 12(20): 23060-23075, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32345013

RESUMO

Hollow functional metal silicate materials have received the most interest due to their large inner space, permeable and functional shell, lighter density, and better use of material compared to their solid counterparts. While tremendous success has been made in the synthesis of individual metal silicates with uniform morphology, the synthesis of multiphase hollow silicates has not been explored yet, although their direct applications could be promising. In this study, mesoporous aluminosilicate spheres (MASS) are transformed to submicrometer copper aluminosilicate hollow spheres (CASHS) via a one-pot hydrothermal process. CASHS has a hollow interior with Cu-Al-Si thorn-like moieties in a lamellar structure on its outer shell. The structure and morphology of CASHS are unique and different from the previously reported tubular copper silicates that are emanated from Stöber silica spheres. Herein, we also demonstrate that the extent of hollowing in CASHS can be attained by controlling the aluminum content of pristine MASS, highlighting the existence of parameters for in situ controlling the shell thickness of hollow materials. The application of CASHS as a potential heterogeneous catalyst has been directed to important oxidation processes such as olefin oxidation and the advanced oxidation process (AOP). In cyclohexene oxidation, for instance, high selectivity to cyclohex-2-en-1-one is achieved under moderate conditions using tert-butyl hydroperoxide as the oxidant. CASHS is a robust heterogeneous catalyst and recyclable for this reaction. CASHS-derived catalysts also favor AOP and enhance the removal of cationic dyes together with H2O2 through an adsorption-degradation process.

10.
ACS Appl Mater Interfaces ; 11(50): 46825-46838, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31746179

RESUMO

Exploring noble-metal-free advanced electrocatalysts for oxygen evolution reaction (OER) is of great significance for development of sustainable energy systems. Rationally engineering chemical composition, electronic structure, and micro/nanoarchitecture of these catalysts represent a promising way to achieve their desired performance. Herein, we propose a general synthetic approach to prepare a series of porous nanosheets of bi- and tritransition-metal phosphides with homogeneous compositions supported by reduced graphene oxide (the resultant samples are termed as rGO/MaMb-P for simplicity, including rGO/CoFe-P, rGO/NiFe-P, rGO/CoNi-P, and rGO/CoNiFe-P). The resultant sheet-on-sheet hierarchical nanocomposites exhibit outstanding OER performance with low overpotentials, small Tafel slopes, and long durability in alkaline electrolyte, which compete favorably with the state-of-the-art OER catalysts reported to date. The remarkable electrocatalytic performances originate from their hierarchical structures and tailorable compositions with optimized electronic structure modulation and synergistically electroactive sites, together with large active surface area and smooth mass/charge transports. This synthetic route could serve as a facile and controllable process to simultaneously realize the architectural manipulation, compositional regulation, and electronic modulation for low-cost OER electrocatalysts based on earth-abundant metal elements in practical water electrolysis and other energy applications.

11.
ACS Appl Mater Interfaces ; 11(26): 23180-23191, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252455

RESUMO

Metal-organic frameworks (MOFs) have emerged as a promising class of materials. However, their insulating nature has limited their application as electrocatalysts. Herein, we report a heterogeneous nanostructure of a Ni-based MOF-modified Ni3S2/NiS hollow nanoparticle. The Ni3S2/NiS hollow core is prepared by a sulfuration process from a colloidal nickel nanoparticle using dodecanethiol followed by a low-temperature heat treatment in air to remove the adsorbed organic ligands. The thin shell of the Ni-based MOF (Ni-BDC) is synthesized using an in situ method in which the nickel sulfides supply the metal source and the additional terephthalic acid serves as the linker. Serving as an oxygen evolution reaction catalyst, this hybrid nanocomposite shows superior electrocatalytic performance with a low overpotential of 298 mV at 10 mA·cm-2 without carbon addition and a long-time endurability with no detectable activity deterioration, which can be attributed to the synergistic effect of the advantageous heterogeneous structure, combining the good hydrophilicity and coordinative unsaturation of the Ni-BDC shell and the high conductivity and porosity of the Ni3S2/NiS core as well as the strongly coupled interface between them.

12.
ACS Appl Mater Interfaces ; 11(16): 14774-14785, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30924333

RESUMO

The activity of zeolite-supported nanocatalysts is dependent on both the dispersion, size, and location of metal nanoparticles around the zeolite and the size and pore structure of the zeolite. In this study, a synthetic approach was developed to encapsulate metal catalysts within hollow interiors of single-crystal ZSM-5. Briefly, Stöber silica spheres were synthesized and then transformed to single-crystal nano-ZSM-5 (Si/Al = 60), followed by growth of embedded metal nanoparticles and subsequently creation of a nanosized (30-50 nm shell thickness) hollow hierarchical zeolite structure. Metal nanoparticles such as Co, Cu, Cu-Zn, Fe, and Ni can be supported on the inner wall of the hollow zeolite and the surrounding satellite mesopores, without any particles present on the external zeolite surface. When evaluated as a catalyst for the Fischer-Trøpsch reaction, the Fe@h-ZSM5 catalyst shows high activity, sintering and coking resistance (50% longer stability than Fe@ZSM5), and secondary cracking reactions in the acid sites in the ZSM-5 shell, which reduce C5+ hydrocarbon selectivity and increase smaller-chain hydrocarbon selectivity. In addition, when Pt was further deposited inside the hollow structure, shape-selective alkene hydrogenation was demonstrated. These configured nanoscale zeolite catalysts have potential applications for reactions that involve supported metal nanoparticle catalysis, shape selectivity, or secondary cracking reactions.

13.
Adv Mater ; 31(38): e1801104, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30160321

RESUMO

Since pioneering work done in the late 1990s, synthesis of functional hollow materials has experienced a rapid growth over the past two decades while their applications have been proven to be advantageous across many technological fields. In the field of heterogeneous catalysis, the development of micro- and nanoscale hollow materials as catalytic devices has also yielded promising results, because of their higher activity, stability, and selectivity. Herein, the architecture and preparation of these catalysts with tailorable composition and morphology are reviewed. First, synthesis of hollow materials is introduced according to the classification of template mediated, template free, and combined approaches. Second, different architectural designs of hollow catalytic devices, such as those without functionalization, with active components supported onto hollow materials, with active components incorporated within porous shells, and with active components confined within interior cavities, are evaluated respectively. The observed catalytic performances of this new class of catalysts are correlated to structural merits of individual configuration. Examples that demonstrate synthetic approaches and architected configurations are provided. Lastly, possible future directions are proposed to advance this type of hollow catalytic devices on the basis of our personal perspectives.

14.
Nat Commun ; 9(1): 4913, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464298

RESUMO

Formation mechanisms of two-dimensional nanostructures in wet syntheses are poorly understood. Even more enigmatic is the influence of hydrodynamic forces. Here we use liquid flow cell transmission electron microscopy to show that layered double hydroxide, as a model material, may form via the oriented attachment of hexagonal nanoparticles; under hydrodynamic shear, oriented attachment is accelerated. To hydrodynamically manipulate the kinetics of particle growth and oriented attachment, we develop a microreactor with high and tunable shear rates, enabling control over particle size, crystallinity and aspect ratio. This work offers new insights in the formation of two-dimensional materials, provides a scalable yet precise synthesis method, and proposes new avenues for the rational engineering and scalable production of highly anisotropic nanostructures.

15.
Nat Commun ; 9(1): 4326, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337531

RESUMO

Interactions between metal nanoparticles (NPs) and metal-organic frameworks (MOFs) in their composite forms have proven to exhibit beneficial properties, such as enhanced catalytic performance through synergistic effects. Herein, we show that Lewis basic sites can be created within an anionic defective MOF by engineering the electronic state of the pendant carboxylate groups situated at the defect sites. This is achieved from the concerted interactions between the pendant carboxylate groups, embedded Pd NPs and charge-balancing cations (Mn+ = Ce3+, Co2+, Ni2+, Cu2+, Mg2+, Li+, Na+ or K+). This work is the first example of generating a new collective property, i.e. Lewis basicity, in metal-carboxylate MOFs. Importantly, the choice of Mn+, used during cation exchange, acts as a convenient parameter to tune the Lewis basicity of the MOF-based nanocomposites. It also provides a facile way to incorporate active metal sites and basic sites within carboxylate-based MOFs to engineer multifunctional nanocatalysts.

16.
Nat Commun ; 9(1): 3778, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224790

RESUMO

Hydrogen spillover phenomenon is well-documented in hydrogenation catalysis but still highly disputed in hydrogen storage. Until now, the existence of hydrogen spillover through metal-organic frameworks (MOFs) remains a topic of ongoing debate and how far the split hydrogen atoms diffuse in such materials is unknown. Herein we provide experimental evidence of the occurrence of hydrogen spillover in microporous MOFs at elevated temperatures, and the penetration depths of atomic hydrogen were measured quantitatively. We have made Matryoshka-type (ZIFs@)n-1ZIFs (where ZIFs = ZIF-8 or ZIF-67) nanocubes, together with Pt nanoparticles loaded on their external surfaces to produce atomic hydrogen. Within the (ZIFs@)n-1ZIFs, the ZIF-8 shell served as a ruler to measure the travelling distance of H atoms while the ZIF-67 core as a terminator of H atoms. In addition to the hydrogenolysis at normal pressure, CO2 hydrogenation can also trace the migration of H atoms over the ZIF-8 at high pressure.

17.
Adv Mater ; 30(47): e1802094, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106487

RESUMO

Advanced nanocatalysts with high compositional and structural tailorability have emerged as a new class of heterogeneous catalysts exhibiting many new technical merits over their conventional counterparts. Generally, preparation of such catalysts involves the integration of catalyst components with compositional, size, and shape controls into a larger material system in order to bring along collective and synergetic effects of individual components. Herein, a brief review of architectural designs and synthetic strategies for making these nanocatalysts is presented. Due to length constraints, only four major types of them are highlighted together with some general rules of design and synthesis. Finally, a critical outline of future perspective in this field is proposed.

18.
ACS Appl Mater Interfaces ; 10(35): 29435-29447, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30089361

RESUMO

Intercalation of silica-supported nickel nanoparticles within mesoporous silica has been achieved through chemical reduction of nickel silicate with mesoporous silica ( mSiO2) coated on inner and outer surfaces. Formation of nickel nanoparticles was controlled at nickel silicate-silica interface and was well-confined by mSiO2 coating. Doping of other transition metals has been accomplished at the stage of nickel silicate formation, because of similarity in critical stability constants of respective metal salts. Doped nickel silicates were able to produce nickel-based bimetallic and trimetallic alloy nanoparticles within the final dual-shell configuration. This type of catalyst has been tested for both liquid- and gas-phase reactions, all showing good activity and selectivity. Ni nanoparticles could serve as the active catalyst or activity enhancer to other alloyed metals for different reactions. Especially for selective hydrogenation of trans-cinnamaldehyde, 100% selectivity toward hydrocinnamaldehyde at full conversion has been achieved without using noble metals. Spent catalysts in all cases showed no changes in terms of morphology and crystal structure, indicating this type of catalyst was robust under such reaction conditions, including gas-solid reaction systems.

19.
Chem Commun (Camb) ; 54(51): 7030-7033, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29873363

RESUMO

Noble metal nanoparticles smaller than 2 nm were immobilized inside the channels of mesoporous silica via a self-assembly method using cetyltrimethylammonium chloride as a structural directing agent. This general approach can be used for integration of various precious metals into mesoporous silica matrixes of ∼30 nm to achieve better matter utilisation and higher catalytic activity.

20.
Small ; 14(21): e1704403, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29682872

RESUMO

A series of amorphous 3D Co-based phosphate networks with hierarchical porosity, including the CoPi, the binary CoM1 Pi and the trinary CoM1 M2 Pi (Mi  = NiII , FeIII , CeIII ) are produced via a novel bitemplate coprecipitation approach at room temperature. Interestingly, the integration of FeIII and CoII in the same network is found to significantly influence both the porosity and the electronic state of CoII . The CoFePi with a FeIII to CoII mole ratio of 0.91 has a specific surface area of 170 m2 g-1 and average pore size of 12.3 nm, larger than those of the CoPi network; furthermore, the CoII within such CoFePi exhibits a higher oxidation state than that in the CoPi. Due to such structural and compositional merits, the binary CoFePi network shows superior oxygen evolution reaction (OER) electrocatalytic activity, which gives an overpotential as low as 0.315 V at 10 mA cm-2 and a Tafel slope of 33 mV dec-1 in 0.10 m KOH. Additionally, the trinary CoFeNiPi demonstrates similar OER catalytic performance. The two phosphate networks also exhibit remarkable catalytic stability. In view of their easy preparation, superior activity, high stability, and low cost, such transition metal phosphate networks are promising catalysts for practical OER processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...