Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(4): 1089-1104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148413

RESUMO

Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.


Assuntos
Pescoço , Medula Espinal , Análise de Elementos Finitos , Vértebras Cervicais , Osteogênese
2.
J Biomech Eng ; 145(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578172

RESUMO

Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid-structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.


Assuntos
Ossificação do Ligamento Longitudinal Posterior , Doenças da Medula Espinal , Humanos , Ligamentos Longitudinais/fisiologia , Análise de Elementos Finitos , Osteogênese , Doenças da Medula Espinal/etiologia , Ossificação do Ligamento Longitudinal Posterior/complicações , Vértebras Cervicais
3.
Comput Methods Biomech Biomed Engin ; 26(16): 1941-1950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36576174

RESUMO

This study aims to establish and validate a poroelastic L4-L5 finite element model to evaluate the effect of different sitting postures and their durations on the mechanical responses of the disc. During the sustained loading conditions, the height loss, fluid loss and von-Mises stress gradually increased, but the intradiscal pressure decreased. The varying rates of aforementioned parameters were more significant at the initial loading stage and less so at the end. The predicted values in the flexed sitting posture were significantly greater than other postures. The extended sitting posture caused an obvious von-Mises stress concentration in the posterior region of the inter-lamellar matrix. From the biomechanical perspective, prolonged sitting may pose a high risk of lumbar disc degeneration, and therefore adjusting the posture properly in the early stage of sitting time may be useful to mitigate that. Additionally, upright sitting is a safer posture, while flexed sitting posture is more harmful.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Análise de Elementos Finitos , Vértebras Lombares/fisiologia , Postura Sentada , Fenômenos Biomecânicos/fisiologia , Disco Intervertebral/fisiologia , Postura/fisiologia
5.
Proc Inst Mech Eng H ; 236(10): 1541-1551, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36239382

RESUMO

Previous literature has investigated the biomechanical response of healthy and degenerative discs, but the biomechanical response of suboptimal healthy intervertebral discs received less attention. The purpose was to compare the biomechanical responses and risk of herniation of young healthy, suboptimal healthy, and degenerative intervertebral discs. A cervical spine model was established and validated using the finite element method. Suboptimal healthy, mildly, moderately, and severely degenerative disc models were developed. Disc height deformation, range of motion, intradiscal pressure, and von Mises stress in annulus fibrosus were analyzed by applying a moment of 4 Nm in flexion, extension, lateral bending, and axial rotation with 100 N compressive loads. Disc height deformation in young healthy, suboptimal healthy, mildly, moderately, and severely degenerative discs was 40%, 37%, 21%, 12%, and 8%, respectively. The decreasing order of the range of motion was young healthy spine > suboptimal healthy spine > mildly degenerative spine > moderately degenerative spine > severely degenerative spine. The mean stress of annulus ground substance in the suboptimal healthy disc was higher than in the young healthy disc. The mean stress of inter-lamellar matrix and annulus ground substance in moderately and severely degenerative discs was higher than in other discs. Age-related structural changes and degenerative changes increased the stiffness and reduced the elastic deformation of intervertebral discs. Decreased range of motion due to the effects of aging or degeneration on the intervertebral disc, may cause compensation of adjacent segments and lead to progressive degeneration of multiple segments. The effect of aging on the intervertebral disc increased the risk of annulus fibrosus damage from the biomechanical point of view. Moderately and severely degenerative discs may have a higher risk of herniation due to the higher risk of damage and layers separation of annulus fibrosus caused by increased stress in the annulus ground substance and inter-lamellar matrix.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares , Amplitude de Movimento Articular
6.
Biomech Model Mechanobiol ; 21(6): 1743-1759, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35931861

RESUMO

Spinal cord injury (SCI) is a global problem that brings a heavy burden to both patients and society. Recent investigations indicated degenerative disease is taking an increasing part in SCI with the growth of the aging population. However, little insight has been gained about the effect of cervical degenerative disease on the spinal cord during dynamic activities. In this work, a dynamic fluid-structure interaction model was developed and validated to investigate the effect of anterior and posterior encroachment caused by degenerative disease on the spinal cord during normal extension and flexion. Maximum von-Mises stress and maximum principal strain were observed at the end of extension and flexion. The abnormal stress distribution caused by degenerative factors was concentrated in the descending tracts of the spinal cord. Our finding indicates that the excessive motion of the cervical spine could potentially exacerbate spinal cord injury and enlarge injury areas. Stress and strain remained low compared to extension during moderate flexion. This suggests that patients with cervical degenerative disease should avoid frequent or excessive flexion and extension which could result in motor function impairment, whereas moderate flexion is safe. Besides, encroachment caused by degenerative factors that are not significant in static imaging could also cause cord compression during normal activities.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Idoso , Análise de Elementos Finitos , Medula Espinal , Vértebras Cervicais
7.
Front Bioeng Biotechnol ; 10: 762555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309983

RESUMO

Knowledge of the dynamic behavior of the spinal cord under different testing conditions is critical for our understanding of biomechanical mechanisms of spinal cord injury. Although velocity and contact stress area are known to affect external mechanical stress or energy upon sudden traumatic injury, quantitative investigation of the two clinically relevant biomechanical variables is limited. Here, freshly excised rat spinal-cord-pia-arachnoid constructs were tested through indentation using indenters of different sizes (radii: 0.25, 0.50, and 1.00 mm) at various loading rates ranging from 0.04 to 0.20 mm/s. This analysis found that the ex vivo specimen displayed significant nonlinear viscoelasticity at <10% of specimen thickness depth magnitudes. At higher velocity and larger contact stress area, the cord withstood a higher peak load and exhibited more sensitive mechanical relaxation responses (i.e., increasing amplitude and speed of the drop in peak load). Additionally, the cord became stiffer (i.e., increasing elastic modulus) and softer (i.e., decreasing elastic modulus) at a higher velocity and larger contact stress area, respectively. These findings will improve our understanding of the real-time complex biomechanics involved in traumatic spinal cord injury.

8.
J Orthop Surg Res ; 16(1): 527, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429142

RESUMO

OBJECTIVE: Preexisting severe cervical spinal cord compression is a significant risk factor in cervical hyperextension injury, and the neurological function may deteriorate after a slight force to the forehead. There are few biomechanical studies regarding the influence of pathological factors in hyperextension loading condition. The aim of this study is to analyze the effects of preexisting different types of cervical disc herniation and different degrees of compression on the spinal cord in cervical hyperextension. METHOD: A 3D finite element (FE) model of cervical spinal cord was modeled. Local type with median herniation, local type with lateral herniation, diffuse type with median herniation, and diffuse type with lateral herniation were simulated in neutral and extention positions. The compressions which were equivalent to 10%, 20%, 30%, and 40% of the sagittal diameter of the spinal cord were modeled. RESULTS: The results of normal FE model were consistent with those of previous studies. The maximum von Mises stresses appeared in the pia mater for all 32 loading conditions. The maximum von Mises stresses in extension position were much higher than in neutral position. In most cases, the maximum von Mises stresses in diffuse type were higher than in local type. CONCLUSION: Cervical spinal cord with preexisting disc herniation is more likely to be compressed in hyperextension situation than in neutral position. Diffuse type with median herniation may cause more severe compression with higher von Mises stresses concentrated at the anterior horn and the peripheral white matter, resulting in acute central cord syndrome from biomechanical point of view.


Assuntos
Medula Cervical , Deslocamento do Disco Intervertebral , Artropatias , Vértebras Cervicais/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...