Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1345-1355, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665667

RESUMO

A major limitation of tumor antiangiogenic therapy is the pronounced off-target effect, which can lead to unavoidable injury in multiple organs. Ensuring sufficient delivery and controlled release of these antiangiogenic agents at tumor sites is crucial for realizing their clinical application. Here, we develop a smart DNA-based nanodrug, termed Endo-rDFN, by precisely assembling the antiangiogenic agent, endostar (Endo), into a reconfigurable DNA framework nanotube (rDFN) that could recognize tumor-overexpressed nucleolin to achieve the targeted delivery and controllable release of Endo. Endo-rDFN can not only effectively enhance the tumor-targeting capability of Endo and maintain its efficient accumulation in tumor tissues but also achieve on-demand release of Endo at tumor sites via the specific DNA aptamer for tumor-overexpressed nucleolin, named AS1411. We also found that Endo-rDFN exhibited significant inhibition of angiogenesis and tumor growth, while also providing effective protection against multiorgan injury (heart, liver, spleen, kidney, lung, etc.) to some extent, without compromising the function of these organs. Our study demonstrates that rDFN represents a promising vector for reducing antiangiogenic therapy-induced multiorgan injury, highlighting its potential for promoting the clinical application of antiangiogenic agents.

2.
Mater Today Bio ; 23: 100828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822451

RESUMO

Radiation therapy (RT) has emerged as one of the most promising anti-tumor strategies for neuroblastoma. Nevertheless, the special tumor microenvironment (TME), including hypoxic and GSH-overexpressed TME, often greatly restricts the RT outcome. In this study, we demonstrated a dual-channel parallel radicals nanoamplifier (ATO@PAE-PEG-AS1411/Fe3+). The nanoamplifier was shaped into a bilayer shell-core structure, in which atovaquone-loaded poly (ß-amino esters)-poly (ethylene glycol) (ATO@PAE-PEG) served as the core while Fe3+-absorbed AS1411 aptamer (AS1411/Fe3+) served as the shell. Taking advantage of the targeting ability of AS1411, ATO@PAE-PEG-AS1411/Fe3+ specifically accumulated in tumor cells, and then released ATO as well as Fe3+ in response to the acidic TME. The released ATO dramatically inhibited the mitochondrial respiration of tumor cells, thus sparing vast amounts of oxygen for the generation of free radicals during RT process, which was the first free radicals-amplifying pathway Meanwhile, the released Fe3+ could consume the tumor-overexpressed GSH through the redox reaction, thus effectively preserving the generated free radicals in RT process, which was the second free radicals-amplifying pathway. Taken together, our study demonstrates a dual-channel parallel free radicals-amplifying RT strategy, and it is expected this work will promote the clinical application prospects of RT treatment against neuroblastoma.

3.
Regen Biomater ; 10: rbad044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265605

RESUMO

Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.

4.
Org Lett ; 22(9): 3485-3489, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32323992

RESUMO

A simple iridium catalytic system was developed that allows for a variety of 2-borylthioanisoles to be easily synthesized via ortho-selective C-H borylation of thioanisole derivatives. Once introduced, boryl and methylthio groups were converted by palladium-catalyzed transformations. Density functional theory calculations revealed that weak interactions, such as hydrogen bonding between the C-H bond of the SCH3 group and the oxygen atom of the boryl ligand, control the ortho-selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...